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This thesis contains two main topics, each of which is connec-

ted to the stochastic realization problem. First, we consider some

structural and algorithmic problems in wide sense stochastic realiza-

tion theory which also have applicability to many problems outside

the realm of stochastic realization theory but are here formulated in

that framework. We consider some geometric questions concerning the

solution set of the positive real lemma and provide a Hamiltonian

framework for the non-Riccati algorithms of Kailath and Lindquist;

these are then applied to the stochastic realization problem. Secondly,

we apply the basic techniques and concepts of the strict sense (proper)

stochastic realization theory of Lindquist and Picci and Ruckebusch to

the discrete-time smoothing problem. This provides a naturaZ inter-

pretation of the Mayne-Fraser two-point formula as well as many other

smoothing results, the interpretations of which have hitherto been

quite unclear from a probabilistic point of view. Hence we have laid

the ground work for a theory of smoothing which has so far been

lacking.
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INTRODUCTION

The stochastic reaZization problem can be simply stated as

follows: Given an m-dimensional stochastic process (y(t); t c I),

where the index set I may be either an interval of the real line or a

set of integers, find all linear stochastic systems (in some suitable

class) having the process y as its output process. These stochastic

systems are called stochastic realizations of y. This problem is of

consideravle importance in stochastic systems theory and has applica-

tions in 3nd connections to many fields of study, among which are net-

work theory [8], spectral factorization [3,8], optimal control theory

L[,11], stability theory (4] and the smoothing problem (64,651.

The early contributions to this problem are due to B.D.O.

Anderson [3] and Faurre [11], the first of whom called it the "inverse

problem of covariance generation." In these early papers, the sto-

chastic realization problem was studied from a deterministic point of

view, the objective being to determine the parameters of the stochastic

systems rather than to clarify their probabilistic structures. These

early results have been extended by Clerget [71] and Germain (18].

Following [2], we shall term these aspects of the stochastic realiza-

tion problem wide sense. These problems are intimately connected to

spectral factorization [12] and the positive real lenmra [75-77] (and its



12
nonstationary extensions), the set of all state covariance matrices P

of the stochastic realizations of a stationary process being the solu-

tion set of the positive real lena. The set P is also the solution

set of the Quadratic Matrix Inequality [12,16], and a certain subset

P of P contains the solutions of the corresponding Algebraic Riccati
0

Equation [16].

More recently the probabilistic aspects of stochastic realiza-

tions and their relation to Markovian representations have been studied

in various aspects and degrees of completeness by Akaike[78,79], Picci

[80], Lindquist and Picci (2,53-56], Ruckebusch [1,10,58-60], Lind-

quist, Picci and Ruckebusch [S7], Pavon [9,62] and Willems and van

Schuppen[81]. Here one is interested in a complete probabilistic de-

scription of the stochastic realizations; such a realization will be

named proper [2].

In this thesis, we study certain aspects connected with the sto-

chastic realization problem: We consider some structural and algorithmic

problems in wide sense stochastic realization theory and the applica-

tions of proper stochastic realization theory to the smoothing problem.

However, some of these results, in particular those related to non-

Riccati algorithms and the structure of the set P, are not only part of

stochastic realization theory, but have wider applicability.

In Chapter 1, we consider wide sense stochastic realization theory

for stationary processes with rational spectral densities in both dis-

crete- and continuous-time. The structures of the sets P and P

mentioned above are studied. A parametric representation for P is given
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and its boundary points are characterized. These results are generali-

zations of some found in [2,11,18). Then we show that the elements of

PO are extreme Points of P. This seems to be a well-known result; how-

ever, we have been unable to find a proof of this anywhere in the

literature. In Sections 1'.4 and 1.5, we apply the theory of Hamiltonian

systems to obtain a new derivation of the non-Riccati algorithms of

Kailath and his coworkers [21,29] and Lindquist [22,23,27,83]. The

basic idea of this proof was suggested to us by L.E. Zachrisson. The

continuous-tine version of this result, presented in Section 1.4, is

quite straight-forward and our derivation follows [82] closely. As

expected the discrete-time version is considerably more complicated; it

is presented in Section 1.5. We obtain these results for the special

type of Riccati equations that arises in the context of stochastic

realizations; our results on the general case will be presented else-

where. Finally, the factorization of the discrete-time Riccati equation

presented in Section 1.S is applied to generate realizations of y.

These results are the continuous-time counterpart of Section 6 in [2].

While the study of the proper stochastic realization problem is

of interest in itself, its concepts and techniques can be applied to

other problems, an example of which is smoothing. In Chapter 2, a

smoothing theory for discrete-time nonstationary systems is developed,

much in analogy with our continuous-time papers [64,65]. It is shown

that the smoothing estimate is contained in a finite-dimensional space

1,HG, the frame space [53-56]. Unlike the situation in continuous-time,

in the discrete setting, Ha is not of constant dimension, contributing

it
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to the fact that discrete-time problems are not just trivial modifica-

tions of their continuous-time .ounterparts. In the continuous-time

setting [(64,65], the invertibility of certain covariance matrices is

essential. In discrete-time, this invertibility does not hold on the

whole interval. Hence we apply the generalized '4oore-Penrose pseudo-

inverse (13,66], thereby introducing some further structure in the

theory. In Section 2.6, we derive a two-filter formula of the Mayne-

Fraser type for the smoothing estimate. This formula is in terms of

two estimates: the first (x,) is generated by the usual forward Kalman-

Bucy filter and the second (x*) by the forward counterpart of the

backward Kalman-Bucy filter. This provides further insight into the

classical theory of smoothing. In the final Section 2.7 we use a

different technique to derive the smoothing formulas of Bryson and

Frazier [35] and Rauch, Tung and Striebel [36], which does not employ

the frame space, but an orthogonal decompos'ition of the closed linear

span of {y(t); t c I} much along the same lines as the procedure used

in (9] to solve the stationary stochastic realization problem. Unfor-

A tunately, due to time constraints, we have not had time to tie up all

the loose ends of this theory, and as explained in the text, some pro-

blems have been left open, which we feel otherwise would have been

resolved with a moderate amount of extra work since all the ingredients

needed are at hand. We shall have to return to this in a subsequent

paper.

Chapter 3 is devoted to a study of some topics on the stochastic

realization problem for continuous-time nonstationary processes defined

on the real line. One aim is to generalize the finite interval theory



presented in [64,65]. As a by-product we obtain a natural stochastic

interpretation of an algorithm due to Clerget [71] for the minimum and

maximum variance realizations. Then, the non-Riccati algoritb of (2]

(and Section 1.6) is generalized to this nonstationary setting. All

the results of the thesis are for the so-called reguca' case (i.e.,

there is a full-rank observation noise), but many of them can be

goieralized to the nonregular setting. To aid the reader in doing the

necessary conversions for this, we have included a section (Section 3.6)

providing the necessary transformations. Our results here are general-

izations of the stationary counterparts in [18], in which paper, a con-

trol theory approach is taken. Our results should be compared with

those of Anderson et aZ [74].

Sections 1.4 and 1.5, and Chapter 2 are based on joint work with

Professor Anders Lindquist.

We shall adopt the following notations in the sequel. The trans-

pose of a matrix is denoted by (1). E{.} is the mathematical expecta-

tion, I is the unit matrix. All vectors without prime are column

vectors. If R is a symmetric matrix, R > 0 (R ; 0) means that R is

positive (nonnegative) definite. If R > 0, R' is the unique nonnega-

tive square root of R. 6st is the Kronecker symbol. The set of inte-

gers will be denoted by Z; Z+ will denote {0, 1, 2, ... }. Finally,

the set of real numbers will be denoted by IR.



CHAPTER 1

RICCATI AND NON-RICCATI METHODS IN STOCHASTIC
REALIZATION THEORY OF STATIONARY PROCESSES

1.1. Stochastic Realization Theory: A Review

In this section, we shall review certain facts from stochastic

realization theory for both discrete - and continuous - time stationary

processes. The' discrete-time case will be presented first.

Let {y(t); t e Z}, where Z is the set of integers, be an

m-dimensional centered stationary and purely nondeterministic stochastic

process defined on an underlying probability space. The process y is

said to have an n-dimensional Markovian representation [1] if there

exists an n-dimensional stochastic process {x(t); t c Z}, which

together with y satisfy a linear stochastic system

x(t+l) = Ax(t) + Bw(t) (1.1a)

y(t) = Cx(t) + Dw(t) (l.lb)

where A, B, C and D are constant matrices of dimensions n x n, n x p,

m x'n and m x p respectively, A is a stability matrix i.e. all its

eigenvalues are strictly inside the unit circle (for short, IX(A)l < 1),

and {w(t); t c ZI is a p-dimensional white noise, i.e. a zero-mean

6
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stochastic process of covariance E{w(t)w(s)'} I1 6st* The process x is

called the state of the system; it is stationary with constant covariance

E{x(t) x(t)'} - P = P' k 0 (1.2)

which clearly satisfies the Liapunov-type equation

P - APA' + BB'. (1.3)

The process y is called the output of the system (1.1) and w is the

input.

j The covariance function K (s): - E{y(t+s)y(s)I} of the output pro-

cess y of (1.1) is easily seen to be

K (s) - G 1 + G'A'- 1 C1l + (CPC' + DD')6 S, (1.4)

where G = APC' + BD' and s = 1 if s > 0 and 0 otherwise. Then the

spectral density function O(z) of y is given by

4(z) a K (s)zS " C zI-A)'G + G' i'I-A') IC' + (CPC' + DD'), (1.5)
S Y',o

which is a rational function in z. It is easy to see that O(z) has the

following properties

(i) each element of 4 is analytic on the unit disc: IzI < 1,

(ii) 4(z) = (z - )' and

(iii) (eW) 0 for all w e 1R.

The stochastic realization problem is the inverse of the above con-

struction i.e. from the knowledge of the spectral density of a process,

we wish to determine alZ" representations (1.1) of the process.



8

More specifically, let' {y(t); t e Z1 be as above. Let the spectral

density O(z) of y be given. Assume O(z) has the above properties (i.e.

it is rational and satisfies (i)-(iii) above.) In addition, assume that

(e i ) > 0 for all w c R and that 0 <&)0 <- (the significance of

these assumptions will be made clear when the need arises.) The problem

is to find all Markovian representations (1.1) with n = dim A minimal

and whose outputs have the same spectral density 0 as that of the given

process y. Such a representation will be called a wide sense stochastic

realization [2] of y, although it might be more descriptive to call it a

realization of 0. In fact, this is a deterministic problem which re-

quires determining all quadruplets [A, B, C, D] from the knowledge of 0.

The probabalistic problem of finding all proper [2] stochastic realiza-

tions (i.e. all systems (1.1) whose outputs not merely have the same

covariance properties as the given process, but are equal to it a.s.)

will be discussed in Chapter 2 in the nonstationary setting.

The wide sense stochastic realization problem is equivalent to the

classical spectral factorization problem [3]: given (z), find all

minimal stable spectral factors of 0 i.e, all matrices W(z) of proper

real rational functions of minimal McMillan degree (4] with all poles

inside the unit circle and satisfying

C(z) = SV(z) W(z-)' . (1.6)

To see that this is the case, first observe that if [A, B, C, D] is a

minimal realization of y, then

W(z) = C(zI-A) 'B + D (1.7)
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is a minimal stable spectral factor of 0. Conversely, any such minimal

spectral factor W, gives rise to a whole class of wide sense stochastic

realizations of the form

IT-1 AT, T'1B, CT,D] (1.8)

where [A, B, C, D] is a minimal realization (4] of W and T is an arbi-

trary nonsingular n x n matrix.

Using the method of partial fractions, O(z) can be written

$(z) = S(z) + S(z- 1 )' (1.9)

where S is a discrete positive real rational function [5]. Since S is

proper(i.e. S(-)' <0), it has a minimal realization (F, G, H, J], i.e.

S(z) - H(zI-F) 1 G + 1 (1.10)

for some constant matrices F, G, If and J of dimensions n x n, n x m,

m x n and m x ni respectively, where n is the McMillan degree [4] of S.

Hence, IX(F)'I< 1,(F, G) is controllable and (H, F) is observable.

Several procedures are available for determining [F, G, H, J] (6,7],

which is unique up to the equivalence (1.8). Using the fact that S is

discrete positive real and the Positive Real Lemma, Anderson [5,8] has

shown that all wide sense stochastic realizations of y are given by

[A, B, C, D] = [T-1 FT, T'(B I , B2) V, HT, (R(P) , 0)V] (1.11)

where T is as above, V is a p x p constant orthogonal matrix, B1 is

n x m and B2 is n x (p-m), P is n x n symmetric positive definite matrix

which together with B1, B2 and R(P) satisfy
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P a FPF' + B1B + B2Bj (1.12a)

G = FPH' + B1R(P) (1.12b)

R(P) a J + J, - HPH' . (1.12c)

Since 0 < 0(o) < , and assuming dim F a n 2 1, it is easy to show that

F is nonsingular [9], R(P) > 0 [9,10] and that

R(P) - G'FIH' + 0(o) - HPH' . (1.13)

It is no restriction to take T u V - I i.e. to consider realizations of

the form

x(t+l) - F x(t) + B1u(t) + B2v(t) C1.14a)

y(t) = H x(t> + R(P) u(t) , (1.14b)
U

where w = v].

Let P = {P P solves (1.12)). For each P e P, define

A(P)= -P + FPF' + (G-FPH')R(P) (G-FPH')', (1.15)

and let P 0  {P c P I A(P) 01

In the following preposition, we collect some facts from Anderson [5],

Faurre [11] and Pavon (9].

Proposition 1.1. The. set P is convex and compact and there are two

elements P. and P* in P such that P, < P < P*for all P e P. Moreover,

0P = {PIA(P) <5 0}. Finally, Pc0 is the set of aZZ solutions of (1.12) for

which B = 0.

2___
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Remark. In the proper stochastic realization setting (to be discussed

in Chapter 2), P has an interesting interpretation; these realizations

are the internal ones (i.e. those which can be constructed in terms of

the given process without introducing exogeneous noise).

The minimum P, and the maximum P* are of particular interest. The

following matrix Riccati equations, given in (11], may be used to

calculate them.

Proposition 1.2. Let {IT(t); te Z+} and (1(t); t c Z+} be the solutions

of the n x n-mntri difference equations

I1(t+l) - 1I(t) - AC(TEt)) ; 11(o) - 0 , (1.16a)

RCt+l) - ft~t) - A(ft~t)) ; t(O) a 0 (1.16b)

respectively, where A is given by (1.15) and A by

(P) = -P + F'PF + (H' - F'PG)(J + J' - G'PG)- (H' - F'PG)t. (1.16c)

Then 11(t) P, and (t)"  P* as t o

Remark. Equation (1.16a) has an immediate stochastic interpretation in

terms of the Batman filter. Consider an arbitrary realization of the

form (1.14) with state covariance P. The linear least squares estimate

R(t) of x(t) given the data {y(O), y(l),...,y(t-l)} is generated by

the Kalman filter

R(t+l) = FR(t) + K(t)t) - HR(t)] ; (0) 0 , (1.17)

where K is the Kalman gain and is given by
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K a (Ff1' + B1 R(P)]R-  , (1.18b)

R flHE' + R(P) (1.18c)

and E is the error covariance ECt) - E{[x(t) - k(t)][x(t) -(t)]t}

which satisfies the matrix Riccati difference equation

ECt+l) a FE(t)F' - K(t) K(t)' + BB' ; E(G) - P. C1.18d)

Set 11(t): - E{R(t) (t)'}. Then 11(t) - P - E(t) which inserted in (1.18d)

implies that II satisfies (l.16a) and that

K - (G - FpJ')R(f)"h .  (1.18e)

Hence, by the above proposition 11(t) + P, and K(t) - B, as t + m, i.e.

P, and B, can be regarded as the state covariance and the gain of the

steady-state Kalman-Bucy filter.

In introducing the continuous-time version of the stochastic reali-

zation problem, we shall closely follow the presentation in (2]. Let

{y(t); t e R} be a mean-square and purely nondeterministic m-dimensional

stochastic process with stationary increments and zero mean. Then there

exists an orthogonal stochastic measure d9 such that yt e- dw)

and E{d (w) d9(w) +} = *(iw)dw. (Here + denotes conjugation and trans-

position.) The m x m-matrix of real functions 4 is the spectxat density

satisfying (i) each element of 4) is analytic on the imaginary axis,

(ii) 0(s) = $(-s)', (iii) $(iw) Z 0 for all w c R and (iv) (co)' < .

Furthermore, $ is assumed to enjoy the additional properties that

R : D(*) is positive definite (the singular case will be studied in

Chapter 3) and that 4(iw) > 0 for all w e l. Analogously to the

discrete-time case, I cm be v:-itten
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¢(s) - Z(s) + 7.(-s) , (1.19)

where Z is a positive real function [8]. Let [F, G, H, R] be a minimal

realization [4] of Z. Then Re{X(F)} < 0, (F, G) is controllable, and

(H, F) is observable.

Now, the problem is to find aZZ representations of the type

dx = Ax dt + Bdw

dy = Cx dt + Ddw

such that the output y has spectral density 0 ,n = dim A minimal and

Re{X(A)}< 0.

Modulo a trivial coordinate transformation in the state space, all

solutions to this problem are of the form

dx = F x dt + B1du + B2dv (l.20a)

dy = H x dt + Rdu, (1,20b)

where B = (B1 ,B2) and P = E{x(t) x(t)'} satisfy the Positive Real Lemma

Equations

FP + PF' + BIB I + B2 2  = 0 (1.21a)

G=PHI+ *BR" (l.21b)
1

P - P, > 0 (n x n-matrix). (1.21c)

Let P = {P I P solves (1.21)1. For each P c P, define

A(P) = FP + PF' + (G - PH')R 1(G - PH')' . (1.22)

Then P=P P' 0 1 A(P) 5 01[2]. Let P ={PEP1 A(P) =01. Then

Proposition 1.1 holds for this setting also (11]. Moreover, in analogy

with the discrete-time case, this problem can be seen to be equivalent
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to finding all minimal stable spectral factors of the type

W(s) W(-s)' - (s) . (1.23)

The continuous-time counterpart of Proposition 1.2 is

Proposition 1.3. Let 11 and It be the unique soZutione of the n x n-matrix

differential equations

ft(t) -A(II(t)) , (o) 0 (1.24&&)

and

11(t) A A(n(t) (0) - 0 (1.24b)

reepectiveZy, where A is given by (1.22) and A by

A(P) = F'P + PP + (H' - PG)R-I(H' - PG)'.
-1

Then1n(t) p. andt(t) *P*at-.

Remark. As was remarked (after Proposition 1.2), equation (1.24a) has

the interpretation that 11(t) = E{R(t) k(t)'}, where (t) is the

linear Uact squares estimate of the state process x(t) of the system

(1.20) given the record {y(s); 0 < s : ti which is generated by the

Kalman-Bucy filter

A = F R dt + K(t)R [dy - H R dt]; X(0) = 0

where the Kalnmn gain K is given by

K = (G - ITH')R " . (1.24c)
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1.2. Structure of the Set P: Continuous-Time

Since each wide sense stochastic realization is deteruined by its

covariance matrix P, an investigation of the structure of the set P

of all such matrices is deemed necessary. In this section, we shall

exploit the role played by a Hamiltonian matrix to be defined below to

provide some new links between the solutions of what is known as the

Algebraic Riccati Equation (ARE) (the solution set of which is P0 ) and

those of a Quadratric Matrix Inequality (QMI) with solution set P. The

boundary and extreme points of P will be studied.

Let P+ - {P P I P > P.} and P. - (P c P I P P*1, where P, and

P* are the minimum and maximum elements of P defined in Section 1.1.

Since 0(iw) > 0 for all real w,P* - P, > 0 (12; p. 360], and consequently

P+ and P_ are both nonempty. For each P e P, define the feedback matrix

r - F - (G - PH)R 1H . (1.25)

Let the feedback matrices corresponding to P* and P* be denoted r* and r*

respectively. It .can be shown that Re{X(P,)} < 0 and Re{X(r*)} 3 0

(12; p. 360], (11; p. 53]. Finally, from the given matrices F, G, H and

R, construct the 2n x 2n-matrix

F - (F - GR 'H)' - H'R- I (1.26)

F:LGR 1 GI (F -GR H)](.6

(the significance of which will be clear shortly.) It is trivial to see

that F is a Hwmnitonim mtrix i.e. F * IFI', where I = ['
Consequently, if X ; i = 1,2,...,n is an eigenvalue of F, so is -X

1 1
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(13]. It can also be shown that F must have no purely imaginary elgen-

values (14].

In the following proposition, we collect some facts from Brockett

[4], Faurre [11], .MacFarlane [14], Mtrtensson (15] and Willes (16].

Proposition 1.4. There is one and onZy one P e P with Re{(F)} < 0

(Re Cr)i > o), nwa ,y P*(P4). Moreover, the eigenvaluee of the corr-

sponding feedback matrix, r*(r*) are the n eigenvaluee of F with negative

(positive) real parts.

The following lemma will be needed in this section.

Lema 1.5. Let PI and P2 be arbitrarj e ements of P0 and zet ra

r be the correeponding feedback matrices (1.25). Then

rIAP + aP2  0 , (1.27)

where AP -P1 - P2.

Proof: Since P1 and P2 belong to Pe0 A(P1 ) = 0 and A(P2 ) 0 0. Sub-

tracting the second from the first and adding and subtracting the

quantity P1H'R 1HP2 , we obtain (1.27). 0

As a first corollary to the above, we can easily prove some of the

statements of the previous proposition.

Corollary 1.6. The feedback matrices r, and -r*. are similar. (Conse-

quently, if X. ; i = 1,2,...,n arc the eigenvaluee of r, then

-X. ; i = 1,2,...,n are the eigenvalues of r*.)
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Proof. Since O(iw) > 0 for all w eR, P* -P > 0. By the above lema,

-1r,(p*- P) + (p* - p,)r*, 0 0. Hence r, -(P* - P,)ri , (P* - P0)-

Now, we turn our attention to the other solutions of the Algebraic

Riccati Equation : A(P) a 0

For an arbitrary n x n-matrix M with n+ eigenvalues with positive

real parts and n" eigenvalues with negative real parts, let L (M) and

L- () denote the invariant subspaces spanned by the corresponding

(generalized) vigenvectors.

Lema 1.7 (J. C. Willems [16]). ret P P0 and r the cormsponding

feedback matrix (1.2S). Then

ra = ra , for a L-(r) (1.28a)

and

rb - r*b for b c (r) (1.28b)

The following corollary is a trivial consequence of the above

lemma.

Corollary 1.8, Let P and r be as in Lemma 1.7. Then the eigenvalu88

of r are among those of r. and r* (i.e. among those of . (In parti-

cular, the feedback matrix corresponding to any solution P e P has no0

pureZy imaginary eigenvalues.)

The above corollary is in agreement with the well known result of

Potter [17] (generalized in [15] to the case of nondistinct eigenvalues)

that all solutions of the (ARE) may be obtained from the eigenvectors

corresponding to the eigenvalues of the Hamiltonian matrix F.
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The next corollary, which holds under a natural and standard

assumption that F can be transformed to Jordan form, provides some more

information about the feedback matrix r corresponding to any solution

PEP .
0

Corollary 1.9. Asewu, the HciriZtonian matrzi F has distinct eigenvaZues.

Let X be an eigenvaZue of the feedxzk matrix r corresponding to an

arbitrary eZement P of P. Then -X cannot be an eigenvaZlue of r.

Proof. Let [F, B, H, R] be the (unique) realization corresponding to

P (since P c P 0 B 2 - 0), which gives rise to the spectral factor

W(s) "1 "- -RO (sI - r)- 1 B 1  .+ R ,

which can be written X y(s), where Xr is the characteristic polynomial

of r and M is a matrix polynomial. Therefore, by Cramer's rule, Xr

equals the numerator of det W, and consequently, in view of (1.23),

Xr(S) Xr(-S) = O(s), where * is the numerator polynomial of det 0. But,
since, in particular, this relation holds for r = r* and since

Xr,(-s) - xr*(s) (Corollarly 1.6), l must be the characteristic poly-

nomial XF of F (Proposition 1.4), i.e.

xr(s) Xr(- s) = XF(s)

Now suppose X and -X are eigenvalues of r. The (s - X)(s + X) is a

factor of both X (s) and xrC-s). Consequently, (s - X) (s + X) is a

factor of XF(s), which is clearly a contradiction to the assumption that

F has distinct eigenvalues. 0
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In particular, we are able to see that the sets

V* e.P I P >j* n " { P < P*} are singletons.

Corollary 1.10. An n M n jnwetrio" matrix P beZongs to P+ (Po) if and
0 0

on~y if the feedbacok matrix r orresponding to P is sintlZa to 41' (I'*).

Proof. Let P c P+ . Then P > P,. Hence, by (1.27),
0

r M-(P - P,)r (P - p, 1. Conversely, if 1 is similar to - ,

then r has all eigenvalues in the right half plane. But, by Proposition

1.4, there is only one such feedback matrix, which is r*: the one

corresponding to P*. By the assumption O(iw) > 0, P* .- P > 0 i.e.

p* P . The proof of the other part is~analogous. 0
0

Indeed, Corollary 1.10 may bereformulated as: P+ - {P*} and
0

,O {P*}.

Next, we shall discuss the relationships between the solutions of

(ARE) ::^A(P) - 0 and (Q(I) : A(P) , 0.

For any e > 0 and any matrix M, define the ball U(M,c) = {L : L =

M + N, uIN JI'< e, where 11"11 is the usual matrix norm associated to the

vector Euclidear norm.

Definition 1.11. An n x n symmetrix matrix P belongs to the boundary of

P (denoted by 3P) if, for all e > 0, there exist two matrices P1 and P2

belonging to U(P,e) such that P1 E P and P2  P. (Since P is closed,

aP C P.)
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The following theorem, which provides a complete characterization

of the boundary points of P, is due to Germain [18].

Theorem 1.12, Let Pe Padast-%aFP + Po adSo a G-PH.

Then P 0 e V if ad onZy if he mtrifx o RO 0oj is nguZar.

As a corollary, we obtain the following result linking P with P.

A sharper result will be given later in this section.

Corollary 1.13. P 3 aP.

Proof. Let Po e Po " Then A(Po) 0 0, consequently, the matrix MO (see

Theorem 1.12) is singular. 0

In fact, if m < n (which is usually the case in application), we

have a stronger result, namely

Corollary 1.14. Let m < n and let P 1 and P2 be arbitra'y elements of

Po 0.Then the segment [PV, P2] is contained in P. (Zn partiZlar,

[Pa,- P1 C aP.)

Proof. Let a e [0,1] and define P(c) =a P + (1 -a)P2. Then A(P(a))

may be written

A(P(a)) = aA(P I ) + (1 - a)A(P 2 ) - c(1 - c)(P 1 " P2 )H'R'H(Pi - P2 ). (1.29)

Since PV P2 Po', A(P1) = A(P2 ) = 0. Let Q(a) = -FP(a) - P(a)F' and

S(a) = G - P(a)H'. Then it is easy to see that
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,-ACPC ) Q(a) - S(a')R'S(a)' , cC& - a)(P 1 - P2) H'R H(P1 - P).

If m' < n, H'R 1 H is not full rank and hence the matric M(c0) - S(c)

is singular. Then P(at) e 3P IV a.e [0,1]. 0

The final task of this section is to prove that solutions of the

(ARE) are extreme points of the set of solutions of the (QMI). This is

a much stronger result than Corollary 1.13. (The extreme points of a

set are contained in its boundary.) To this end, we shall need the

following lemma.

Lemma 1.15. Let P be an arbitrary element of P . Suppose there
exist, two elemente P1 and P2 belonging to P such that

P = aP1 * (1 - )P2 for some a e (0,1). Then, P1 c Po P2 4 P and

APH'I HAp= 0, where AP = P " P

Proof. Let P, P1 and P2 be as in the lemma. Then, by (1.29),

A(P) = aAc(P) + (1 - a)A(P 2) - c(l - c)APH'R'IHAP. Since a e (0,1), the

last term is < 0. On the other hand, .since A(P) = 0 (for P e P

A(P1) < 0 and A(P2 ) g 0 (for both belong to P), the last term must

be i 0. As a > 0, APH'R 1 HAP = 0. Consequently, A(PI) = A(P2 ) = 0.

which implies P1 and P2 belong to Po" 0

The above lemma says in essence that elements of P0 cannot be written

as the convex combinati'on of elements other than those of P
0

The next theorem is the main result of this section. The basic

idea of its proof was suggested to us by Professor D. Sorensen.
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Theorem 1.16. Let P e . ThenPisan treme point of P.

Proof. Let P e P0 and assume there exist P1 and P2 c P such that

P a aP + (1 - a)P for a a (0,1). We shall show that P  P P2

By Lemma 1.15, P1 e Po' P2 c P0 and APH'R'HlAP = O. The last of these

facts implies APH'R "4 a O, i.e. P HtR "I - P2 H'R" . This in turn implies

that (G - P H')R 1 (G - P1H')' a (G - P2H')R'I(G - P2H')': a E. However,

P1 and P2 are in P0 implies FP 1  P 1 ' - -E FP2 + P2P' . Hence

FAP + APF' = 0. But F is a stability matrix i.e. Rel(F)'< 0. Then F

and -F' have no eigenvalue in common, which implies AP a 0 (see e.g.

(19]). Hence P1 a P2 = P. 03

If the eigenvalues of F were distinct, the above result may alter-

natively be proved by the following.

Proposition 1.17. Lt P and P2 be two eZLement of P such that
1 2 0

APH'Rl H&Pa 0, whereP AP P " P" en, r a r and
1 2'1 2

r2AP +P 0 , (1.30)2 2

wher'e r 1and r ae the feedb'ack matrices corresponding to PIandP2

respective y.

Proof. Recall that r1 - F - GRIH + P1H'RIH. As was indicated in the

proof of Theorem 1.16, APH'R 1 HAP = 0 implies P1HtR "  - P2HR •

Then r1 a r2 " The rest of the result then follows by (1.27). 0

Therefore, if the eigenvalues of F are distinct, so are those of r2

(Corollary 1.8). Then, by Corollary 1.9, r2 has no opposite eigenvalues,
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and consequently AP in (1.30) will be zero (19]. Hence, in view of

Lemma 1.15 any P e P is an exteme point of P.
0

Of course, if m = n, Theorem 1.16 would follow trivially from

Lemma 1.15 since then H'RIH is full rank and hence the condition

APH'R1'HAP a 0 implies AP = 0.

1.3 Structure of the Set P: Discrete-Time

In this section, we shall present the discrete-time versions of some

of the results of the previous section; the purpose being to facilitate

easy comparisons. At times, we shall need to resort to a well-known

7equivalence between dynamic systems in continuous- and discrete-timeCk
(8, 11, 18] to prove some of these results. Further properties of the

set P in this discrete setting will be studied in Section 1.6.

Let P+ and P be defined as in the previous section. Here again,

since O(ei ) > 0 for all real w, P* - P, > 0 [18]. Analogously with

(1.25), in this case we define the feedback matzix to be

r = F - (G - FPH')R(P)-1 H. (1.31)

The feedback matrices r, and r* corresponding to P* and P* satisfy

the properties: IX(")I" < 1 and Ixcr*)l > 1 (11]. Furthermore, it can

be shown [9] that O(w) > 0 implies that r, is nonsingular.

The following is a slight modification of a result in (18]. It

will be useful in what follows. Our proof will shed more light on the

structure of P. Unlike [18], we do not rely upon the corresponding

continuous-time result.

~~1
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Lemma 1.18 (a) Set R, - J + J' - HPH'. Let P i P+ t aet

* -(P - P*)-1. Then M* satieifiea

-t4 * + H'R;'H + N a 0 (1.32a)

for some nonnegative definite matrix N.

(b) Set * J J jt- HP*Ht. ret PC P adse#M* ( (P* - P)-. Thn

M* satisfies

-.r*'M*r* + H'R*' H 
+ N - 0 (I.32b)

for sa nonnegative definite matrix N.

Proof. Ca) Let P P +. In view of (1.12) and (1.16a), we have

P a FPF1 + (G - FPHt)R(P) I(G - FPH')' + BzB2I and

P..a FPe* + (G - FPH')R, (G - FPH')'

Upon subtracting the second of these two relations from the first, the

following is obtained

MII M;$F, + KR(P)K' K.RK.t + B2 B2 ' , (1.33)

where K and K, are defined by KR(P) • G - FPH' and K, = G - FPH'. It

-1 -1
is easy to see that R, • R(P) + HMIH' and that K - [KR, - FM I JR(P)

Let AK a K - K,. Then AK w (KwH - F)M. H'R(P) and K = K, + AK and

(1.33) becomes

, FMt 1F'+(K, + AK)R(P) (K* + AK)' - K,(R(P) + HMH')K, + B2BI

After long, but simple calculation, we get

m,1 - rMlrj + rMHI'R(P)1 HM; r + B2B1

or

m, r, [M; + M;1H'(P)lHMIlr "
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Taking the inverse of both sides, we obtain

M, s r''1[M;l + M;IX, R(P)-'HN;ll 'r;1

from which, the following relation is obtained

m. i rM %r' - r''H'R'1Hr; 1

using the matrix inversion lemma

[A + BD 1C]"' a A" - A-IB[D + CA'B] CA . (1.34)

Then, preaultiply the last inequality by r. and postmltiply by r.

to get

r+Mr, S - H'R;1 H

which yields (1.32a) for some nonnegative definite matrix N. This

proves (a). The proof of Cb) is analogous. Q

As a first application of this lemma, in the next theorem, we

give a parametric representation for the set P. The formula-

tion of the result is analogous to that in (2] for the continuous-time

I icase.

i Theorem 1.19 Let M*(N) and M*(N) be the soZutions of (1.32a) and (1.32b)

Naspectivety, Then

(a) he mtrixP P [M*N)] belonga to P if and only if

(b) the matrix P uP* [ M*N)]1 4 betongs to P if and only if

Nt0, and

(C) P*- P, [M,(O)] - (M*(O)] "
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Proof. (a) We have to prove the "if' part; the "only if" was proved in

Lemma 1.18. Let M,(N) be a solution of (1.32a) with N k 0. The pair

(r,, H) is observable for (F, H) is (20]. Recalling that r is a

stability matrix, a standard result in stability theory (see e.g.[13;

p. 86'1 implies M,(N) > 0. Consequently P, + [M,(N)] c P+. The proof

of (b) is analogous and that of (c) is immediate. 0

In addition to its significance in parametrizing the set P Theorem

1.19, together with Proposition 1.2 provide us with a procedure to gene-

rate stochastic realizations of y corresponding to an arbitrary element

P e P+ u P_: First use (1.16a) to compute P,; P* will be obtained from

Theorem 1.19(c) and varying N over the nonnegative cone will generate
the other elements of P+ u P_. The realization [F, B, H, CR(P) ,O)1

corresponding to P e P+ w P can be computed via

B = (G - FPHI)R(P) "), (1.3Sa)

B2Bt - -A(P) • (1.35b)

This procedure for generating stochastic realizations requires solv-

ing a matrix Riccati equation (1.16a) in order to determine P, in

addition to the burden of determining P e P+ u P_. In Section 1.6

another procedure that eliminates the intermediate step of computing

P will be given.

The second aspect of the structure of P that will be discussed in

this section is its boundary.

As was pointed out in Proposition 1.1, P is bounded. A complete

characterization of the boundary points of the corresponding set pC in
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the continuous-time setting was given in Theorem 1.12. Here, by

associating the discrete-time quadruplet [F, G, H, J] with a continuous-

time one [Fc, Gc, Hc , Rc](an idea that is well known [8, 11, 18]), we

shall give complete characterization of these boundary points. We shall

also gain more insight into the relationship between the set P and the

set P 0o

In order to distinguish between the continuous and discrete settings,

we shall adjoin the letter c(d) (as a subscript or superscript) to the

matrices and sets of the continuous (discrete) setting whenever there is

a need for distinction.

Definition 1.20. The discrete-time quadruplet [F, G, H, J] and the

continuous-time one [F c , Gc, Hc, Rc] are said to be equivalent if P - pc.

The following proposition shows how to construct a quadruplet in

one setting from one in the other setting. The proof can be found in

[11].

Proposition 1.21. Every discrete-time quadruplet [F, G, H, J] is equi-

valent to a continuous-time one [F , G , H , R c] where

F : = (F + I) -(F- I), (1.36a)c

G := vr (E + I) G, (1.36b)
c

H : = v" H(F + 1)-, (I.36c)C

R : : J + J' - H(F + I)G - G(F' + I) IH' (1.36d)

Conversely, every continuous-time quadruplet (F, G, H, RI is equivalent

to a discrete-time one [Fd, Gd, Hd, Jd~l where
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Fd : a (I- F) (I + F), (1. 37a)
G d : W/ - (I -F)' G, (1.37b)

Hd : a -T H(I - Pf 1, (1.37c)

Jd : =-R + H(I - F .(1.37d)

Now, we are ready to state the discrete-time version of Theorem 1.12.

Theorem 1.22. Let P 0  Pandeet Qo Po FPoF' and So - G - FP 0.S0 00

Then P cVi f and ontyifthematrix Mo R( is singuato R.

Proof. Let the quadruplet (Fc, Gc, Hc, Rc] be the one given by (1.36)

corresponding to (F, G, H, J]. Let 0 (e) be its corresponding spectral
c

density. It is not hard to see that O(e1 > 0 for all W R implies

*(iw) > 0; hence Rc > 0. By Theorem 1.12, Po c afr if and only if the
co

matrix M Qc is singular. However, it is easily seen that (11]
matrix c  Sc

(F+ 0)"  2(Ft + I) "  - (F+ I)'I

M  r .H(F + i)-1 0 1

Hence Mc and M0 have the same rank and one is singular if and only if the

other is. 0

Corollary 1.23. P c P

Proof. If P0 P0 then Mo in Theorem 1.22 is signular. 0
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Corollary 1.24. Let i < n and let P1 and P2 be arbitrarJ eZeents of

P o Then the segment [Pl, P21 c 3P. (In paticuar [P*,P*] c 3P.)

Proof. It is not hard to see that P c P if and only if P . pC. Hence,
0

by Corollary 1.14, P(a) - tP1 + (1 - ot)P 2  c 3P p, for all

0 [0,1]. 0

Theorem 1.25. Let P e P 0 Tn P is an extreme point of P.

Proof. By Theorem 1.16, P is an extreme point of pC p. 0

1.4 A Hamiltonian Approach to the Factorization of the Matrix Riccati

Differential Equation
I

Consider the matrix Riccati differential equation

P-A(P) ; P(O) - Po (1.38)

Iwhich is of the type encountered in Section 1.1. For convenience, we

recall that

ACP) = P + PF' + (G - PH')R 1 (G - PH')',

where the quadruplet [F, G, H, R] is a minimal realization of the

positive real matrix function Z(s) defined by (1.19). Hence (1.38) has

a unique bounded solution on [0,00) for all P0 : P* (18]. In this section,

we shall present a new approach for factorizing the above Riccati equation

based on Pontryagin's Maximum Principle. In this way, we shall obtain

a new derivation of the non-Riccati algorithms due to Kailath [21] and

Lindquist (22-241. Our derivation will shed more light on these
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algorithms and will provide now links to the Hamiltonian formalation of

(1.38). The basic idea of this procedure (which was indirectly suggested

to us by Professor L. E. Zachrisson) is to consider the above Riccati

equation as arising from an optimal control problem, with which a

Hamiltonian function is associated. The factorization will then be a

direct consequence of the fact that the Hailtonian function is constant

along the optimal trajectory. Another procedure based on the Hamiltonian

formulation can be found in Bucy and Joseph [2S].

It is worth noting that (1.38) is not the most general type of

Riccati equations that one might encounter (e.g. one might have an extra

constant term added to the right hand side of (1.38)). However, our aim

here is to convey the basic ideas of the method, and we are therefore

using the form (1.38) which arises in stochastic realization theory.

Consider the following control problem. Find a square integrable

control function u(.) so as to minimize

J(u;tla) - - - (0)P o x(0) + [u (t) 'Ru (t) + 2 x(t)'G u(t)]dt,

(1.39)

subject to

i(t) x -F'x(t) - H'u(t) ; x(t 1 ) • a (1.40)

Note that since Z(s) is positive real, the function J(u;.,.) is bounded

from below [8; pp. 231-232]. Hence . inff J(u;.,.) > -w. Let

{uk ; k e Z+} (where Z+O- (0,1,2,...}) be a control sequence such that

J(uk;.,.) as k . Then, using the parallelgram identity in Hilbert

space and a completeness argument, it is seen that there is a control u0
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such that J u0;..) - . In fact, this can also be seen from the

proof of

Proposition 1.26. There ezrt a unique square integrab7 flowtion

u0 minimiting J(u;tla). *omover, J(u;tza) ' -1,P(t )a, Aere P

is the unique eoitution of (1.38).

(1

Proof. Consider the function x(t) 'P (t) x(t). Upon differentiating

this quantity and integrating between 0 and t1, we obtain

J (U;ti a) +~ 1 ta x()[ 0 PO x(0) 1 E(t) - A(P(t))]
(t+ llu(t) + R'xG'(t) - RHP(t)x(t) iRdt,

where A(P) is given by (1.22) and ix fIR x'Rx. Then the result follows

by noting that P satisfies (1.38) and that it can be choosen to make the

last term zero. 03

The optimal control uo can be obtained as a corollary to this proposition.

However, since the Hamiltonian function will play an important role in

what follows, we shall instead apply the Maximum Principle. First, let

x° be the solution of (1.40) corresponding to u . To apply the Pontryagin

Maximum Principle, define the H~Riltonian function

1
f(t,x(t),u(t),y(t)) = -u(t)'Ru(t) + x'(t)Gu(t)

+ y(t)'[-F'x(t) - -'u(t)]. (1.41)

Then the Maximum Principle requires that for a control u
° to be optimal,

H(t,x (t) ,u (t) ,y(t)) must- be minimal i.e.

3 (t,x (t),u (t),y(t)) 0 = Ru°(t) + G'x°(t) - Hy(t), (1.42a)
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where the ajoint function y is given by

- (tx°Ct),u(t) ,y(t)) - Gu° Ct) - FyCt) (1.42b)

with initial condition y(O) u P0x0 (0). Hence the optimal control is

u°(t) a -R l [Gxo(t) - Hy(t)]. (1.43)

Using (1.40), (1.42) and (1.43), it is easy to see that the 2n-vector

L o1 satisfies

[FO() 
[a (0)

where F is defined by (1.26). Then

x0 (t) = X (t)x0  (1.4Sa)

Y () - Y (t) x0 (1.45b)

where xo  x0 (0) and X and Y are n x n matrix functions satisfying

F [X] FX(o 1 F
F L () P

We recall the following well-known fact:

Proposition 1.27. Let X and Y be as in (1.45). Then X(t) is non-

singuZar for all t and the matrix function P(t) : - Y(t) X(t) "

is the unique solution of (1.38).

As a corollary to the above proposition and using (l.45a,b), it

can be seen that

y(t) = P(t) x0 (t). (1.46)
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Now, let the function Ho : [0, 11 -*R be defined by

H°(t) : at{(t,x°(t),u(t),y(t)). (1.47)

Lemma 1.28. Let H° be defined byj (1.47). Then

HO(t) xO(t) I,(t)xO(t). (1.48)

Moreoper, t) a 0, i.e. H is constant along the optimaZ trajeotory.t

Proof. Clearly, for each t c [O,tl], the problem to minimize J(u;t,x0 (t))

has the optimal solution (u°(s);s c [O,t]}; we shall misuse notations

somewhat by calling this restricted function u° also. Then, by Proposi-

tion 1.26, J(u°;tx 0 (t)) -_- x(t)'P(t)x(t). Hence, since

H°(t) - ' (u°;t,xo(t)+ y :t)'*(t), where y(t) is given by (1.46),
BHo

(1.48) follows. The fact that y- (t) - 0 follows from elementary

calculus. 0

Lemma 1.29. Let Ho be defined by (1.47). Then

H° 2 x° M(t)x (1.49)
20 0

where xo = x0 (0) and the n x n matrix function M is defined by

u(t) a X(t)P(t)X(t). (1.)

~Proof. The result is an iiinediate consequence of (1.45a) and (1.48) 0
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Lemma 1.30. Let M a'd A be given by (1.50) and (1.22) respectively. Then

M(t) - A(P ) C11511

(i.e. M is constant.)

Proof. Using (1.44) and (1.46), it is easy to see that *o - .r,xO

where r is the feedback matrix (1.25). Let T be the trinsition matrix

of r. Then xo - (0,ti)a. Hence, H°(t) a ' (-,tl)

which is constant for all a e Rn. Consequently, 1 (0,tl)'M(t)Y(O,tl) is

a constant matrix, hence the same is true for M. But, by definition

M(O) - P(0), which, in view of (1.38) is the same as A(P ); and conse-

quently (1.51) follows. 0

Lemma 1.31. Let X be as in (1.4S). Then

d(Xt)',- = r(t) C(xt),)-

where r is given by (1.25).

Proof. Using d (X,-1) = - l-i (1.45) and Y(t) = P(t)X(t), the

dtI result follows. 0

We are now ready to state the main result. First observe that,I since the n x n-matrix A(Po) is symm-ric, there exist two constant

matrices N and S such that A(Po) = NSN', where N is n x r, S is r x r

and r is the rank of A(P ). (For exonple, S can be choosen as the

signature matrix although we shall use a different S below.)
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Theorem 1.32 ((21]). Let P-be the unique 8oZution of (1.38). Then

{ (t) - Q MSQ~t M P(O) U P 0  
(132a)

q.(t) - tM)Q(t) ; Q(0) - N, (l.52b)

where Q(t) - (X'(t))'IN and N and S are given as above.

Proof. From (1.50) and (1.51), we have = K"IA(P0 )X" , which by the

preceding discussion and Lemma 1.31, is (1.52). 0

As an application of the factorization (1.52), consider the problem

of determining the Kalman gain K given by (1.24c), where 11 is the

3oiution of (1.24a), in which case 110 = 0 and A(O) - GR-1 G'. Hence

choosing N = GR"h and S = I in (1.52), we obtain the following non-

Riccati algorithm for K

- -QQ'H'R "  ; K(0) a GR"  (1.53a)

Q (F - KR'-i)Q ; Q(O) z GRO, (l.53b)

which was first obtained independently by Kailath [21], who used the

factorization above, and Lindquist (22], who derived it from basic

principles using backward innovations.

As another application of interest in realization theory, consider

the case where P is any element of P as defined in Section 1.1. In0

that case A(P) = - 2 Bt , where B2 is given by (l.20a), and we may choose

N and S to be B2 and -I respectively to obtain

S- QQ' ; P(O) = PO (.54a)

l= Q ; QCO) = B2 . (1.54b)
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Then it can be shown [2] that P(t) e P for each t e R and therefore

P(t) is the state covariance of a realization for which (in view of (1.21))

1 (G - P(t)H)R "  aad B2 - Q(t)

Hence, we have the following non-Riccati algorithm generating a family of

realizations

B B2H ; B (O) - (Bo) 1  (I.S4c)B2  BIR 2  ; B2(0) - (B0)2 (.54d1

f for a given initial matrix B [(Bl)o, (B2 )o]. (Note the parameter t is

not time now.)

This algorithm was first presented in (2]. In Section 1.6, we are

going to derive its discrete-time version, which is, as expected, more

complicated. Also, in Chapter 3, we shall derive the nonstationary

version of (1.54).

1.5. A Hamiltonian Approach to the Factorization of the Matrix Riccati
Difference Equation

In this section, the matrix Riccati difference equation

P(t; + 1) = FP(t)F' + (G - FP(t)H')R(t)' (G - FP(t)H')'; P(O) = P (1.55)
0

(which is the same as P(t + 1) - P(t) = A(P(t)), where A is given by

(1.15)] will be considered, where the quadruplet [F, G, H, J] is a mini-

mal realization of S(z) defined by (1.9) and R(t) = J + J' - HP(t)H'.

The aim is to obtain a factorization of this matrix Riccati equation,

analogous to the one obtained in the previous section. This will not

only facilitate comparisons with the continuous setting, but will also
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be the basis for the next section. Moreover, as will be seen shortly,

the lack of symmetry between the two settings will again be illustrated.

Before stating the control problem which gives rise to the above

Riccati equation, we note that the matrix T : - J + JI is nonsingular

since T - R(t) + HP(t)H', and R(t) is assumed to be positive definite

for all t. Again the problem is to find a control u(.) which minimizes

J(u;tl,a) -- x(O)'PoX(O) [ [u~t l)'Tu(t + )
t-O

+ 2x(t + 1)'Gu(t + 1)], (1.56)

subject to

x(t) - F'x(t + 1) + H'u(t + 1) x(t1 ) = a. (1.S7)

As in the continuous-time setting, the assumption that S(z) is posi-

tive real insures the boundedness of the functional J and the existence

of the optimal control u°. Also, using an argument similar to that of

Proposition 1.26, it is not hard to check that

JIu0;tx 0Ct)) xo(t)P(t)xo(t), (1.s8)
2

where x is the solution of (1.57) corresponding to u0 and J(u;t,x(t)l is

the value function defined by

1 It-i

J(u;t=x(t)) .-- x(O)'Pox(O) 2 - Z [u~ k + l) t Tu(k +1)k-0

+ 2x(k + 1)'Gx(k + 1)]. (1.59)

As in Section 1.4 we are misusing notations somewhat by 
denoting u0

restricted to [O,t] u0 also. Again, the optimal control u0 can be obtained

from the derivation of (1.58); however, we shall resort to the Hamil-
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tonian. To exploit the analogy with the continuous-time problem, we

shall use the Maximm Principle of [26] with the HamiZtonin function

H(t,xCt + 1), u(t + 1), y(t)) u ( uCt + l)'Tu(t * 1) + x'(t * l)GuCt + 1)

+ y(t)'[x(t + 1) - F'x(t + 1) - H'uCt + 1)],

(1.60)

where yt) - y(t + ) x(tl) (tx°Ct + 1), u°(t + 1), y(t)), i.e.

y(t + 1) Fy(t) - G u°(t 4 1) ; y(O) - P0 x (0), (1.61a)

u° and x° are as above. Note that then

3H0x0 (t + 1) - x0(t) - (t'x (t + 1), u?(t + 1), y(t)).

Hence, with this formulation, there is a complete analogy between the

discrete- and the continuous-time settings just exchanging derivatives

for differences.

Now the Maximum Principle states that H(t,x°(t + 1), u°(t + 1), y(t))

has a minimum for u = u°(t) i.e. by differentiation

Tu°(t + 1) + G'x?(t + 1) - Hy(t) a 0.

which implies

u (t + 1) - 1 [G'x°(t + 1) - Hy(t)]. (1.61b)

Using relations (1.57) and (1.61), some straight-forward algebraic

manipulations yield the result that the 2n-vector y satisfies

S ] (t) [ y(tl) [x (t 1) a [;XO].
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where the matrix F is given by

F (1.63a)

and

A - F - GT'1H. (1.63b)

Then, as in the continuous-time setting

x (t) a X(t)x0  (1.64a)

y(t) U Y(t)x0  (1.64b)

where x0 = x°(O) and X and Y are n x n matrix functions satisfying

(A'X(t + 1) - X(t) - H'T- HY(t) ; X(O) = I (1.65a)

Y(t + 1) - AY(t) + GT1 IG'X(t + .) Y(0) - (1.6Sb)

To exploit the analogy with the continuous-time setting, the follow-

ing lemma is needed.

Lemma 1.33. Let P be any n x n symmetric matrix and let R : =T - HPH'

be nonsingular. Then, the matrix (I - H'T" HP] is full rank and its

inverse is [I + H'R'IHP].

Proof. It is easy to check that

[I - H'T- HP](I + H'R HP] = I.

Hence, the two matrices in the left hand side are full rank. 0
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Lema 1.34. Let (] be the solution of (1.65) and let P be the solution

of the Riocati equation (l. 5). Then YCt) = P(t)X(t).

Proof. Replace Y by PX in (1.6Sb) to obtain

P(t + 1)X(t + 1) - AP(t)x(t) + GT IG'X(t + 1)

Then, use Lemma 1.33 to obtain X(t) from (l.6Sa) with Y(t) set equal

to P(t)X(t). Then inserting this into the above equation, we jbcain

[P(t + 1) - P(t) - A(P(t))]X(t + 1) a 0

which, in view of (l.S5) is an identity. Hence the lemma follows. 0

As a first corollary to the above two lemmas, we have

Corollary 1.35. Let X and P be as in Lemma 1.34. Then the matrix X(t)

is nonsingular for all t c Z+. Moreover, the matrix A is nonsinqular.

Proof. From (1.65a), we have A'X(l) - [I - H'T"'HP0], which by

Lemma 1.33 is full rank since R(O) : = T - HP°H' is nonsingular. Hence

A and X(l) are also. The result now follows by repeating this argument

for t=l,2,... . 0

As another corollary, we obtain the counterpart of Proposition 1.27.

xProposition 1.36. Let [y] be the solution of the system

FX(t+l) 1 FA'1  -A'-IH'T'IH 1 FX(t) [X(O)]

Y(t+l)]_ GT 1G'A"I A-GT IG'Ar H'T'IHj jY(t) LY( ) j P

(1.66a)
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Then P(t) : = Y(t)X(t) "1 is the solution of (1.sS) and

y(t) - P(t)x°(t). (1.66b)

In analogy with the continuous-time setting, define the n x n-matrix

M(t) = X(t + 1)'16PtiX(t * 1) (1.67)

where X(t) is given by (1.64) and (1.66a) and SP : P(t + 1) - P(t).

Just as in Section 1.4, we want to express the optimal sequence

{H°(t); t - 01,...,t 1 } defined by

H°Ct) HCt,x°(t + 1), u°(t + 1), y(t)) (1.68)

in terms of M.

Proposition 1 .37. Let H° and M be given byj (1.68) and (1.67) reepectivey.

Then 1 1o~t o'o

HD(t) = -xIM(t)x - x (t + 1) P (t) 6x0 (t + 1) (1.69)

wherex = x°() and xo(t + 1) x(t + 1)x t).

Proof. It is easy to see that

00

H° (t) = J(u°; t + 1, x°(t+l1)) -J(u°; t X0°(t)) + y(t)'ICx° (t + 1) - X0°(t))

where J(u;t,x(t))is given by (1.59). Remember that u restricted to

[O,t] minimizes J(u;t,x°(t)). Hence, by (1.58) and (1.66b)
1lo 10

Ho(t) = 1.x (t)'P(t)x°(t) - -x°(t + 1)'P(t + 1)x°(t + 1) - x°(t)'P(t)x (t)

+ x0 (t)'P(t)x 0 (t + 1),

lo 0which, upon adding and subtracting the quantity -x (t + 1)'P(t)x (t + 1)

and using (1.64) and (1.67), yields (1.69). 0
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However, unlike the continuous-time setting, the sequence H°(t) is

not constant, nor is the matrix function M. We shall now use the Riccati

equation (1.5S) to get an alternative expression for the Hamiltonian

sequence H°(t).

Lemma 1.38. Let H? and M be given by, (1.68) and (1.67). Then

H"(t) -- x[M(t - 1) - M(t - )X(t)-H'R(t - l)-lH(X(t) ')'M(t- 1)]).

18x°t + l),P~t)Sx Ct + 1). (1.70)

Proof. First, using (1.60), we may write

HO(t) (I Ot + 1)'Tuo(t + 1) + x°(t + 1'Gu°(t + 1) - y(t)'x°(t)

+ yt)'x°(t + 1).

Upon inserting (1.61b) and (1.66b) into this equation, we.obtain

H (t) - I x(t)tP(t)xO(t) - Ix2(t + 1),GT-IGlxO(t + 1)2 2o

+lo -l 0 1o2- (t) t P(t)HIT Ht) (t)- -x°(t)'P(t)x (t) + x°(t) 'P(t)x0 (t + 1)

Next, it is not hard to check that the Riccati equation (1.5S) can be

reformulated to read

P(t) - A(P(t - 1) + P(t - 1) H'R(t - 1)'lHp(t - 1)]A' -GT1I)

where A is given by t.63b). Inserting this value for GT'G, into the

above, we get

0 1oHOWt  =-- xo(t),P(t)xO(t) + 21xO(t + l)'A[P(t 1 )

i xo

+ P(t - 1)H'R(t - 1)-.HP(t)]A'x°(t + 1),+ x (t)'P(t)H'T-IHP(t)x°(t)

" x° (t + +)'P(t)6°(t + 1).

_
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Finally, it is not difficult to check, using (1.61b) and (1.57) that

x°(t + 1) - A 1I[ - H'T' HP(t)]x°(t) (1.71)

which inserted into the above equation for H°(-c) yields (1.70). 0

The above lemma, together with Proposition 1.37, provide us with

a recursion for M.

Lemma 1.39. Let M be given by (1.67). Then M satisfies

M(t) - M(t - I) - M(t - I)X(t)-I HIR(t-I1)- 1H(X(t)')'I1M(t - 1). (1.72)

Proof. Using the same argument as in the proof of Lemma 1.31, this

follows from the fact that r(t) is nonsingular for all t, which follows

from Lemma 1.40 below. 0

Before we state the main results, we shall need the following

Lemma 1.40. Let X(t) be as in (1.64) and (1.65). Then

-1 -(xmt + 1),) = r(t)(X(t)')l, (1.73)

where r is the feedback matrix (1.31).

Proof. Upon applying the matrix inversion lemma (1.34) to (1.65a), in

view of Proposition 1.36, one obtains

(Xt + 1)') - [F + FP(t)H'R(t) - G(T- + T-IHP(t)II'R(t)- )H](X(t)')-

(1.74)
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The last term in (1.74) can be written

G(T 1R(t) + T 1 HP Ct)H )RCt)- H CX t) )- I

which is -GR(t)' H(X(t)')'I. 0

Analogously to the continuous-time case, let r : - rank M(O); then

M(O) u X(l)'6P1 X(l) can be written NSN', where N is n x r and S is r x r.

Theorem 1.41. Let {P(t); t e Z+} be the solution of (l.5S) and let N

and S be as above. Then P can be determined from the eytem

P(t + 1) - P(t) - Q(t)Z(t)Q(t)' ; P(O) . P (1.75a)
0

where the matriz sequences {Q(t); t E Z+}, {Z(t); t E Z+1 are generated

by

Q(t + 1) a (F - U(t + 1)R(t + 1)- H]Q(t) ; Q(O) z r(O)N (1.75b)

U(t + 1) - U(t) + FQ(t)Z(t)Q(t)'H' U(O) - G - FPoH' (1.75c)

R(t + 1) • R(t) + H(t)Z(t)Q(t)H' ; R(O) z J + J' - HPoH' (1.7Sd)

Z(t + 1) = Z(t) + Z(t)Q(t)'H'R(t) HQ(t)Z(t) ; Z(O) - -S. (1.75e)

F

Proof. Let Q(t):= (X(t + 1)') 1 N and U(t): =G - FP(t)H'. Then by (1.73),

Q(t + 1) = r(t +1)Q(t) which, by (1.31) and the definition of U, yields

(1.75b). Next, in view of (1.72) and the fact that M(0) = NSN', it can

be easily seen that M(t) = -NZ(t)N'. Then (1.7Sa) follows from (1.67).

Finally, (1.75c) and (1.75d) follow from (1.75a) and the definitions of

U and R. 0

As an application of the factorization (1.75), consider the problem

of determining the Kalman gain K given by (l.18e). In this case H. = 0
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and A(O). = GT1G'. Hence, we may choose N - X'(l)GT and S I, in

which case,

K(t) - Uct)R.Ct) "i ; K(O) - GT"  , (1.76)

where Uct), R(t) are given by (1.75) with initial conditions

Q(O) = GR" , U(0) - G, R(0) - T and Z(0) a -I.

This version of the algorithm is the one originally presented by

Lindquist (27, 83]. The general case can be found in [29], where the

following factorization was used

aPt+l • r(t) [6Pt - SPtH' R(t - )- 1 H6P r(t). (1.77)

Relation (1.77) can be obtained from (1.72) by inserting (1.67) and not-

ing that (XCt + l)')'Ix(t)' - r(t).

1.6 Non-Riccati Algorithms Inside the Set B.

Each P e P can be interpreted as the state covariance matrix (1.2)

of the corresponding realization (1.14) [5]. Consequently, there is a

minimum-variance (P,) and a maximum-variance (P*) realization for each

of which B2 = 0.

Faurre' s Algorithms (1. 16) show that the solutions 11 (t) and 11(t)

converge to P,, and P* respectively as t m. However, these solutions

start outside the set P (for 0 J P). In this section, P, and P* will be

approached from inside P. In particular, for a given P0 ' P- (P s P),
o0 +

we shall construct a trajectory extending from P0 to P, (from P to P*)
0 0

so that this trajectory is a totally ordered set of matrices satisfying

(1.12). Such a result will enable us to construct a countable family of
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realizations of y, the state covariances of which are totally ordered,

yielding a procedure to obtain a countable family of realizations without

resort to the intermediate step of determining the auxilliary quantity P.

Indeed, the (non-Riccati) factorization of the previous section will be

the basis of this procedure.

The work presented in the rest of this chapter is the discrete-time

version of Section 6 in [2]. The procedure is more complicated than its

continuous-time counterpart. However, this is natural and is largely

due to the fact that the matrix R(P) depends on P, while its counterpart

in the continuous case does not.

First, let us start with the following

Lemma 1.42. Let A(P) be defined by (1.15). Then, for each P0 1 P,

the solution {P(i); i e Z+} of the matrix difference equation

P(i + 1) - P(i) = A(P(i)) ; P(O) = P (1.78)0

satisfia (i) PCi) e'P for al i e Z+ , (ii) P(i 2) < P~i1) fo' i I <

and (iii) if P e P ,P(i) P, as i+.
0

Proof. Since P £ "' A(P) s"B 2 B2 [see (1.35)]. Then P(i) satisfies

(1.75) with N - X(l)'B2 and S -I. Then Z(O) - I and conseouently it

follows that Z(i) k 0 for all i e Z+. Therefore, in view of (1.75a),

6P i+ 1  A(P(i)) < 0. Hence P(i) c P for all i c Z+ . This proves (i)

and (ii).

To prove (iii), let M. P* - P(i). An argument similar to that

used in proving Lemma 1.18 yields that
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M Sil r*t. ' - r*MiHWR:'1M i r*; Mo P*" P

Since M > 0 (for Po c P) and M - M. ? 0 by (1.75a), M. > 0
[ 0 Z

V i Z . Consequently M. exists. Let M*(N) be as defined in

Theorem 1.19. DefineV M*(0) -M 1 Then -V. V (M+1 -1 .11
1+r M: 1~ i+

By (1.34), we have

.... lmlr*l. + r*tlHfR. - t1iH')" I *" 1

+11 13 1

i r*tlm lr*- + r* t1HtR Hr 1.

Consequently,

! V~~~i+l. - i 1.r,11.-,,,H,-I,-

But by (1.32b), M*(0) satisfies

-,*(0) + r*"-IM*(0)r * -' + r*"I'HR*-'Hr*-'I 0.

~Therefore

Vi+I -Vi =- Vi + r*, ivi r  i r* Z+.

Since Ij{(*)I}I1 < 1, V. 0 as i and consequently

1 M. [M * (0) P* - P*" Hence, P(i) + P, as i + o 0

Now, we are ready to state the first main result of this section:

the non-Riccati algorithm. Since the realizations are determined by the

matrix B, the algorithm will be given in terms of this parameter.

Let B be the set of all B - (BI,B 2 ) given by (1.35) with P c P.

Let 8 o. and 5 be defined analogously in terms of Po, F_ and P+.

It is clear that B = {Bc B2 = 01. In particular, let B, and B*
0 2

denote those elements of B corresponding to P, and P* respectively.
0
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Theorem 1.43. Let [F, Bo , H, (R2, 0)] be an arbitrary realization of

y, and, for each .i . Z+, let B(i) = [Bl(i), B2 (i)) be given by

FT

B1 (i) = U(i)R(i) "  (1.79a)

B2 (i) Q(i)Z(i) , (1.79b)

where the matrix sequences U(i), Q(i), z(i) and R(i) are generated by

(1.7S) with initial conditions U(O) = (B) R, R° = Ro , Q(0) (Bo) 2

and Z(O) I. For each i e Z let P(i) be the solution of

- P i- FPF' + B(i)B(i)' = 0 (1.80)

Then, for all i e Z', IF, B(i), H, (R (i), 0] is a realization of y,

u*ith state covariance P~i). Moreover, if B F- B_, B(i) -* (B*,0) as
0 -

i - - o. Finally, the sequence {P(i); i F Z+ } satisfies conditions (i)-

(iii) of Lea 1.42 and the difference equation

P(i + 1) - P(i) " - B2(i)B 2(i)'. (1.81)

Proof. Let P be the state covariance of the initial realization

0I;: F, Bo, H, (Ro 0 0)], ad let {P(i); i e Z+}he the trajectory through Pc0

defined by Lemma 1.42. Then P(i) e P for all i c Z+. Define BI(i) and

B2(i) by
BI(i) : = [G - FP(1)H]R(i) "

and

B2 (i) : Q(i)Z~i) .

Then, since P(i + 1) - P(i) u-Q(i)Z(i)Q(i)', (1.81) follows. From the

proof of Theorem 1.41 we see that U(i) = G - PP(i)H'. Hence
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(1.79a) follows. Equations (1.78) and (1.81) imply B2 (i)B 2 (i)' =-A(P(i)),

which together with the above definition of B1(i) yield (1.80). Since

IX(F) I' <1 and (F, B(i)).Is controllable (for (F, B0) is), the solution

of (1.80) is unique, symmetric and positive definite. This fact,

together with (1.80) and the definition of B1(i) insure that (P(i), B(i))

satisfies (1.12). Hence [F, B(i), H4.(.R(i)k, 0)] is a realization of y

with state covariance P(i). By Lemma 1.42, P(i) satisfies conditions

(i) - (iii). Finally, by the same lemma, P(i) - P, as i + - if P0  P- "

Hence, if B E 8_, B 1 (i+ B, as i c and, in view of (1.81),

B2 (i) B2(i) + 0 i.e. B2(i) 0. 0

Remark. Throughout this section, we have used the parameter i rather

than t to stress the fact that this quantity has nothing to do with time.

The next task is to construct a sequence belonging to set P which

is increasing (rather than decreasing) in i and which converges to P*.

In the continuous-time case, this can be done using the same Riccati

equation.; the analogue of (1.78). Here, unfortunately, to achieve

this, we shall have to follow an indirect procedure through a "backward"

approach. To this end, let us review certain facts about backward

realizations.

We would like to consider realizations of y that evolve backward

in time of the form

+ +t

yxt- 1) = R(t) + A(t) (1.82a)

yet) = x~t) * DCt). (l.82b)

I
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where ; is a normalized white noise sequence such that, for each t, (t)

is uncorrelated to future (rather than past) values of x.

Hence, we can state the backward wide sense stochastic realization

problem as follows: Given the spectral density 4) of y (or equivalently€

the quadruplet [F, G, H, J]), determine all quadruplets [A, B, C, D]

with dim A = n minimal and IX(A) > 1 such that the output y of (1.82b)

has spectral density 4.

The problem has been studied by Pavon [9] and earlier in [10, 11,

18). We shall outline some of the results of [9, 11) here, since we

shall need them below.

The backward realization problem is deterministic in nature and is

equivalent to the dual spectral factorization problem considered by

Anderson (30) and Faurre [11], which -requires determining all minimal

unstable factors W(z) of O(z). Since R(z'l1)W(z)l - O(z)', this problem
is equivalent to finding all minimal stable factors (z - 1 of :(z)I.

Consequently, we have reduced the problem to the one considered before.

In fact all solutions to this problem are given by

[X, B, , D] = [T 1 F'T, T 1 (B, B2)V, G'T, (R(p) , O)V]

where T and V are as before, tI' t2' P and A(P) satisfy

P F'PPF + B1 it 2 52 (1.83a)

H' = F'PG + I (P)k (1.83b)

4 R(P) = J + J' - G'PG , (l.83c)

and P is an n x n symmetric positive definite matrix.
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Again, here it is no restriction to take T = V = I i.e. to consider

backward realizations of the form

i(t - 1) - F'i(t) + glu(t) + 2 (t) (1.84a)

Y(t) = G'i(t) + R(P) (t) (1.84b)

where i = [u].
V

Analogous to what we have done before, let P be the set of all solu-

tions of (1.83):, define the map

AP) = - sP + FtPP + 1H',.F'G)fC-H' - FIPG)'I, (1.85)

and let Po = { P A = 01. Then f =P I A(P) 0} and it hasthe same

properties as P. Hence there exist two elements .Y* and P* in Po such

that P, < < P* for every P c P. It is well known [11, 18) that P is

related to P by P {p-I P p P}. Thuse P = (P*)-I and P* = (P;1).

This also explains the choice of (l.16b,c) by Faurre.

In fact there is a one-one correspondence between forward and back-

ward realizations. It was shown in [9] how to compute the backward

elements t and R(P) from the knowledge of the forward ones. In

the following proposition, for convenience, we also include the converse

statement.

Proposition 1.44 (a)C[9]). Assume the quadruplet [F, B, H, (R(P) , 0)]

solves the forward problem. Set

1 '-PIF B(I - BIPlB) , and (1.86a)

(0Cp) , 0) = [(R(P) , 0) -HF'B][I - BIP-B]" . (1.86b)

Then, [F, B, G', 0 (p) , 0)] solves the backward one.
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Cb) aSmva,, the quadruplt [', B, C,, C, ) 0)] soZve the

bawlxd problem. Set

B - , '5 (1.86c)

(RCP) , 0) 0 (( (p) , 0) - G'F' 1 1][I - 1'P'IJ] (1.86d)

Then, [F, B, H, (RCP) , 0)] solves the forward one.

The following lema is the backward counterpart of Lama 1.42 and

Theorem 1.43.

Lemma 1.45. (a) Let A(P) be defined by, (1.8S). Then, for each

P P, the solution {F(i); i c Z+} of the matrix difference equation
0

PCi + 1) - PCi) = A(P(i)) ; P0) - o (1.87)

satisfies Wi P (i) e P for all i c Z+ (i P 2 ) S P(Y1  for

i S i2  d (iii) if P P (i) * P as i.

(b) Let [Ft', o,' G', (Ph , 0)] be an arbitrar bao nd realization of

y, md, for each i e Z+, let i(i) [Ci), 12(i)] be given by

i)- Oi) (i"  (1.88a)

I , 2i)• iZ) I  (1. 88b)

where the matrix sequences 0(i), 4(i), 1(i) and R(i) are generated by

+ 1) - [F'--,(i + 1)A(i + l)G'] Ci) ; 4(0) - (g) 2 (1.88c)

0(i + 1) o 0(i) + F'Q(i)2(i)&Cj), ; 0(0) - () 1  1.,d)

A(i + 1) = R(i) + G't(i)Z(i)O(i)'G ; (0) - 0(.88e)

+GI (i)Z(i) ; 2(0) I (1.88f)
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For eachi i c Z, let 0 (i) be the solution of

-P + F'F + Ri)E(i)' 0 0. (1.89)

Then, for aZZ i c Z , [F' i(i), G C(i) ,)]ia backardrealiation

of y, with state covariace PCi). Moreover, if I C 1(i) * (1,, 0)
0 -

a . The sequence {P(i); i e Z } is the saw as in (a) and it also

satisfies the difference equation

Ci + 1) - C -i) () 2 Ci)' . C1.90)

Proof. (a) By an argument similar to that of Theorem 1.41, it can be

shown that

P(i +1) - PCi) n.)Z-() Ci)' (1.91)

where Q, Z, together with A and 0 are given by (1.88). The rest of the

proof is analogous to that of Leou 1.42.

(b) Let P be the state covariance of the initial backward reali-
0

zation [F', G 0)], and let (PCi); ieZ Ibe the trajectory

through Po defined by part (a). Then the proof of (b) follows upon defining
91(i) "•(H' - F'P~i)G)ACi)_"and 9 2(i : ( (i) .

Now, We are Toady to state the second main result of this section.

It provides us with a trajectory inside P converging to P* and a non-

Riecati procedure to generate a family of realizations, the state

covariances of which are increasing.
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Theorem 1.46. (a) Let P e P and set P : = Let {P(i)' i £ Z+1
0 0 P0i)

be the solution of

P(i + 1) - P(i) = P(i)N(i)P(i) ; P(O) = P. (1.92)

where

N(i) ( 1(i).[(i) - Q(i)'P(i)Q()l (j) , , (1.93)

and J(i) and 2(i) are given by (1.88). Then (') P(i) e P Yi cZ+ ,

(') P(i) P(i2) for i r i2 and (iii) if P0 c P+, P(i) P*as

i -,"O

(b) Let [F, Bo, H (Ro, 0)) be an arbitrary realization of y, and

for each i e Z+, Let [', 9(i), G', (R(i),O)] be the family of realiza-

tions of Lemva 1.45, having state covariance P(i). Let

B(i) : =P-(i))1 Fl (i)(I - t(i)'P(i)lI(i)) , (1.94a)

(R~i ,0) RW kO) GIf-li ][I- R~ m-1(i) k.(1.94b)

kThen, [F, B(i), H, CR(i) ,0)] is a realisation of y with state covariance

P(i) (i). Moreover, if BO e B+, B(i) - (B*, 0) as i . Finally,

the sequence {P(i); i e Z I is the same as in (a) and it a7.o satisfies

the difference equation

P(i + 1) - P(i) -B2 (i)B2 (i)'.

Proof. (a) Let P c P. ThenP := P1 e P. Let {P(i); i c Z+} be
00 0

the sequence generated by (1.91) and (1.88) corresponding to o . Set

P(i) : - P(i) "1 for each i e Z+. Then, by (1.91), Pi + 1) P(i)-

Using (1.34), we obtain (1.92) and (1.93). Since

P(i) £ P - { P P ) 1}, P(i) c P for all i c Z+. This proves (i).
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By condition (ii) of Lemma 1.45, P(i2) P (iI) for i 1 i2, from which
P(i1) : P(i2) for i1 : i2 follows. Finally, if Po c P+' The' P 0 C

Therefore, by condition (iii) of Lemma 1.45, P(i) - P, i.e.

P(i) + P,- as i +

(b) The proof of this part is an immediate consequence of

Proposition 1.44. 0

Remarks. (1) TheoremL43 and 1.46 have the following interpretation.

Let

x 0o(t + l) = Fxo(t) + (Bo)lu(t) + (B)2V(t) (1.95a)

y(t) = Hxot) + Ru(t) (1.95b)

be an arbitrary (wide sense) realization of y with state covariance Po.

(a) Let B(i) = [B(i) , B2 (i)] and R(i) be given by (1.79)

and (1.75). Then for each i e ,

xi(t + 1) = Fxi(t) + B1(i)u(t) + B2 (i)v(t) (1.96a)

y(t) = Hxi(t) + R(i) u(t) (1.96b)

is a realization of y with state covariance P(i) E{xi(t)xi(t)t}

given by

P(i + 1) - P(i) -B 2 (i)B 2 (i)' ; P(O) z Po. (1.97)

Furthermore, {P(i); i e Z } is a decr'easing sequence in i such that, if

B°  , P(i) - P, and B(i) - (B,, 0) as i , where B, is the Kalman

gain of the steady-state Kalman-Bucy filter (1,17).

f
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(b) Let B(i) [Bl(i),B2 (i)] and R(i) be given by (1.94).

Then (1.96) is a realization of y with state covariance P(i) given by

(1.97). But now, the sequence {P(i); i c Z+ } is increasing in i such

that, if B°  8 + , P(i) - P* and B(i) 4 (B*, 0) as i - -. In fact, B*

is the forward counterpart (in the sense of Proposition 1.44) of the

gain of the steady-state backward Kalman-Bucy filter.

C' (2) As an application of Theorems 1.43 and 1.46, we can exploit

the equivalence between dynamical systems in the discrete- and the

continuous-time settings summarized in Proposition 1.21, to construct

a discrete trajectory inside the "continuous" set P as defined in

Section 1.1 and to generate families of realizations for the continuous-

time problem via difference equations rather than differential ones.

To this end, suppose we are given the continuous-time quadruplet

[F, G, H, R]. Let [Fd, Gd, Hd, 'a be defined by (1.37). Then, as we

have seen in Section 1.3, Pd = P. For each P c P define

Ad(P) =-P + PdPFA + (Gd - FdPH)Rdl (Gd - FdPH i)',

where Rd ' J d d HdPHAI

For each P0 e P, the solution {P(i); i C Z
+ of

P(i + 1) - P(i) - Ad(P(i)) ; P(O) = Po

satisfies conditions (i) - (iii) of Lemma 1.42. Also, the analogue

of Theorem 1.43 holds using the quadruplet [Fd' GdV Hd' Jd] "

II



CHAPTER 2

SMOOTHING FOR LINEAR DISCRETE-TIME STOCHASTIC SYSTEMS
IN THE CONTEXT OF STOCHASTIC REALIZATION THEORY

2.1. Introduction

The linear least-squares estimation problem is of great impor-

tance in stochastic systems theory. The classical results on this

subject, which were started in frequency domain language are primarily

due to Kolmogrov [31] and Wiener [32). However, here we shall be con-

cerned with the state space formulations introduced by Kalman [33],

Kalman and Bucy [34), and others.

The problem deals with estimating the state of a given system

from noisy measurements. It can be classified into three categories:

given a past record of data, estimating current values of the state

(filtering), future values (prediction) and past values (smoothing).

In this chapter, it is the last category that we are interested in.

The smoothing problem has received considerable attention in the

literature in the last few years [35-51,61]. (See the survey paper

[52] for further references.) Originally, our interest in this problem

was caused by the well-known two-filter formula due to Mayne [38]

and Fraser [39], on which topic a large number of papers had been

57
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written [40-42, 45-51], and which, nevertheless, we think had not re-

ceived a satisfactory stochastic interpretation. This led to our con-

tinuous-time papers (64,65]. Here, we shall give the discrete-time

version of this theory.

Let {x(t); t c [0,T + 1]) and {y(t); t e [0,T] (here [0,T] :=

0, 1, ... T) be two stochastic processes of dimensions n and m respec-

tively, defined as the solution of the linear stochastic system

x(t + 1) = F(t)x(t) + B(t)w(t) ; x(O) " (2.1a)

y(t) - H(t)x(t) + D(t)w(t) ' y(O) = 0 , (2.1b)

where w is a p-dimensional (p > m), zero mean white noise sequence

satisfying

E{w(t)} z 0 and E{w(t)w(s)'} = 6 , (2.2)

ts

and is an n-dimensional, zero mean random vector with finite covari-

ance matrix N := E{&,} and uncorrelated with w. The matrix R(t) :

D(t)D(t)' is positive definite for all t c [0,T], and F, B, H and D

are time-varying matrices of dimensions compatible with x, y and w.

Finally, F(t) - 1 exists for all t c [0,T].

The model S will be called a linew atochatic 8y8tem; x is its

8tcte process, y its output process and w its input process.

The state covariance functln P(t) :- E{x(t)x(t)'} clearly satis-

fies the Liapunov-type equation

P(t + 1) - F(t)P(t)F(t)' + B(t)B(t)' ; P(O) " N . (2.3)
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The fixed-intezval smoothing problem can now be stated as follows:

for an arbitrary t c [0,T], find the linear least-squares estimate A(t)

of x(t) given {y(s); s F [0,T]1 i.e., the wide-sense conditional expec-

tation [70]

2(t) = l{x(t) I y(s) ; s c [0,T]1 . (2.4)

In this chapter, we shall study this problem from a new angle,

our aim being to develop a unified theory which, we feel, the literature

is still lacking. It is true that some authors [49] have attempted to

do so; nevertheless, we feel those attempts are not satisfactory. Many

problems of interpretation of the existing solutions have remained un-

resolved. The approach we follow to provide such a theory employs con-

cepts and techniques from the stochastic realixation theory developed

in [2,9,10] and in [1,53-60]. The basic idea is to embed the given model

S in a class of models S all having the same output process (not only

the covariances are the same as in Chapter 1, but also the processes

are equal for each t a.s.) and the same Kalman-Bucy filter. Such a

representation is called a proper [2] stochastic reaZization of y to

distinguish it from the wide sense realizations of Chapter 1. The class

S will be shown to contain an element (S,), which together with another

element (S*) which does not belong to S in general, contains all the

information on y needed to estimate x.

We note that the model S we are considering is more general than

the one usually encountered in the literature in that Bw and Dw may be

correlated, i.e., BD' # 0. Secondly, as will be shown later, one of

the major obstacles in developing this theory is the fact that P(t) is
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in general not positive definite. We could assume that the model S is

minimaZ (see Section 2.3); however, this assumption will not guarantee

the invertibility of P on the whole interval [O,T]. In our continuous-

time papers [64,65], this obstacle was removed upon imposing the extra

assumption that the system matrices are analytic functions, which implies

that S is totally controllable. It is worth noting that in the smoothing

literature, conditions to insure invertibility of P are either ignored

all together [61] or mistakenly assumed to hold on the entire interval

as a consequence of complete controllability (minimality) of S. This

is clearly incorrect (see e.g. [63]). Hence, at times we shall apply

the generalized Moore-Penrose pseudo-inverse P* of P wherever P 1 0,

leading to certain nontrivial complications.

The organization of this chapter goes as follows. Section 2.2 is

devoted to preliminaries. A strict sense version of some results on

backward representations developed in Section 1.6 is presented. Our

results are generalizations of those of [9] obtained in the stationary

setting. In Section 2.3, the stochastic realization theory concepts

will be developed and in Section 2.4, we present a discussion about

the frame space, the importance of which is that it contains the smooth-

ing estimate. Section 2.5 will be devoted to the model S* mentioned

above. In Section 2.6, we give a general formula for the smoothing

estimate in terms of S, and S*. Section 2.7 is devoted to deriving

some previously known formulas for the smoothing estimate and to inter-

pret them in terms of our realization theory.
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2.2. Preliminaries

Let H be the space of all centered stochastic variables with

finite second order moments; H is a Hilbert space when endowed with

the inner product (C,n) = E{E}. If u is a p-dimensional stochastic

vector process with components in H, define H(u) to be the subspace

spanned by {u, u2 , ... , up 1. Then, for each stochastic vector process

{z(t); t [,t.]} and t c [to,t 1], define Ht(z) to be H(z(t));

H(z), H-(z) and H+(z) will denote the closed linear hulls in H of all

subspaces H s(z) such that s e [t0 ,tl], [to,t ] and [t,tl] respectively.

Given T c H and a subspace H1 C, -{n I H1 } will be the orthogonal

projection of 1 onto Hi i.e., the wide sense conditionaZ mean [70].

We shall write E{T I u} in place of En I H(u)}. The process n is

called a wide sense Markov process if E{n(t) j H-(n)} a E{n(t) I rn(s)}

for s < t or equivalently, E{r(s) I Ht(r) } = E{ (s) I i(t)}, i.e.,

the Markov property is independent of the time direction.

Let * be the transition function of F, i.e.,

0(t+l,s) = F(t)O(ts) ; t(ss) = I

Since the state process x defined by (2.1a) satisfies

t-l
x(t) = )(t,s)x(s) + I 4(t,j+l)B(j)w(j) (2.5a)

j=s

for s c [O,t-l] and, consequently, H+(w) i He(x) * H;(w) D H-(x), it

easily follows that E{x(t) I H;(x)} = E{x(t) I x(s)}. Hence, x is a

Markov process. However, the difference equation (2.1a) is not sym.e-

tric with time: the two terms in the right-hand member of (2.5a) are

orthogonal if and only if t > s.
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Of great importance in this chapter is a backward counterpart

of (2.1a). By the above argument, such an equation cannot be readily

obtained by merely reversing the time direction. In this section, we

shall construct the backward version of (2.1a) under the assumption

that N > 0; later in Section 2.5, we shall remove this assumption.

Since the covariance matrix function P is given by

t-l
P(t) = i(t,0)Nct(t,0)' + It 4(t,j+l)B(j)B(j) '(t,j l)' , (2.5b)

j=0

it follows that P(t) > 0 for all t e [O,T] if and only if N > 0.

In this case, the process

R(t-1) = P(t)-lx(t) (2.6)

is well-defined for all t e [-l,T], with components in H. Let P denote

its covariance function

P~t-) :-qR~-l) t-1)} .(2.7)

Then, the backward version of (2.1a) is given by

Lema 2.1. Let x be the state process of the Zinear stochastic system

S , and let N > 0. Then, the process 11(t); t c [-1,T]} defined by

(2.6) s8atifies the backward recursion

R (t - ) F (Ct)'IR(t) + 9 (t) (t) 3i ((T =(2.81

for t E [O,T], where [ = P(T+)I x(T+1),

gmi Ot) - -P(t)-l Pct)-IBct) [I - B~t) 'P~t+l) "B~t)] (2.9)

and ; is a p-dimensional normalized white noise sequence satisfying

C2.2) and the condition H;(Q) i Hj(i) for t e [0,T] and is given by
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(t) = [I - B(t)'P(t+l)' B(t)] 2[w(t) -B(t)'F'(t)-P(t)'x(t)].(2.10)

The covariance function (2.7) is given by

P(t-1) = P(t) 1

and satisfies the Liapunov equation

P(t-l) = F'(t)P(t)F(t) + B(t)g(t)' ; P(T) = P(T+1)-1  (2.11)

If N 1 0, equations (2.8)-(2.11) are defined for all t E [0,T] for which

P (t) > 0.

This lemma is a generalization of the results of Section 1.6

which were obtained in [9] for the stationary case. This is a strict

sense version of the wide sense results presented in [48,50] which are

insufficient for our purposes since they are deterministic rather than

probabilistic in nature. Moreover, we have chosen to write the back-

ward version (2.8) in terms of i rather than x, since this choice will

yield a backward Kalman-Bucy filter which is invariant over the class S.

The proof of this lemma is based on the observation that, as the

orthogonal decomposition

x(t+l) _ A{x(t+l) I H-(x)) + [x(t+l) - '{x(t+l) I H-Cx)}] (2.12)

yields (2.1a), the orthogonal decomposition

x "t) = {x(t) I H+ (X)1 + [x(t) _ A{x(t) I +-~)- Hj+lCx)}]  (2.13)

yields the backward version (2.8). (The basic idea of this proof first

appeared in [2].) We shall need the following lemma, the proof of which

can be found in most standard books on estimation theory.
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Lemma 2.2. Let u and v be two stochastic vectors with components in

H, and assume E{vv'} > 0. Then,

A1
E{u I v) = E{uv.(E{vvl}) v

Proof of Lemma 2.1. We shall prove the lemma for the case N > 0; if

N * 0, everything will be the same for t c [0,T] such that P(t) "1

exists. Since x is Markov,

{x(t) I (X) } = E{x(t) I x(t+l)}
t~-l

Upon using Lemma 2.2, the right-hand side is P(t)F(t)'P(t+l)'ix(t+l).

Inserting this into (2.13) and multiplying by P(t) -I yields

R(t-1) = F(t)'(t) + P(t)-ln(t) (2.14a)

where n(t) := x(t) - E{x(t) I x(t+l)}. But, x(t)

F(t) ix(t+l) - F(t)IB(t)w(t), and consequently

rit) = -F(t)'B(t)[w(t) - A{w(t) I x(t+l)}

= -F(t) B(t)[w(t) - B(t)'P(t+l)- x(t+l)] (2.14b)

where we have used Lemma 2.2 to obtain the last relation. Now, from

(2.3), it is not hard to see that

B(t)'P(t+l) 1F(t) = [I - B(t)'P(t+I)'IB(t)]B(t)'F(t) 1 P(t)

Then inserting this and (2.1a) into .(2.14b), we obtain

rj(t) . -F(t) 1B(t) [I - B(t)'P(t+l) 1 B(t)] [w(t) - B(t) 'F(t)' 1 P(t)x(t)]

This together with (2.14a) yields (2.8) with 9 and Q given by (2.9) and

(2.10). From the above discussion, it follows that
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[I -B(t)'IP(t+l)-i B W I (t)--w(t) - E{w (t) IHt+1 

+ (x))

(cf. [9]), which relation implies that i is a white noise such that

H Ht (x) = HR); the factor in front of Q(t) is the appro-

priate normalization factor so that Q satisfies (2.2), as can be easily

checked. Finally, P(t-l) = E{X(t-l)R(t-l)'} = P(t)'IE{x(t)x(t)'}P(t)
" =

P(t) 1. Equation (2.11) is obtained from (2.8) precisely as (2.3) is

obtained from (2.1a). 0

2.3. Forward and Backward Realizations

Let the output process y be defined as in Section 2.1. Any

system of type (2.1) (with i e H, for i = 1, 2, ..., n, w satisfying

(2.2) and i. H(w) for all i) having y as its output is called a

rezlization of y. Clearly, the components of x, y and w belong to H.

The purpose of this section is to introduce the two models S, and

, the knowledge of which determines the frame space (to be definad

in Section 2.4), which in turn contains the smoothing estimate.

As we have seen in Section 1.1, the linear least-squares estimate

x,(t) E{x(t) H_(y)) (2.15)

of the state process x of S is generated on [O,T] by the Kalman-Bucyj

fiZter

X, (t+l) F F(t) x,(t) + B, (t) R,(t) _k[y(t) - H(t) x,(t)] ; ,(0)- 0, (2.16a)

where the KaZnun gain function B, is given by

- [FQHt + BDtJR;, (2.16b)
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R, HQH' + DD' (2.16c)

and the error covariance rntrix

Q,(t) = E{[x(t) - x,(t)][x(t) - x,(t)],} (2.16d)

is the solution of

0*(t+l) = F(t)Q,(t)F(t)'I - B,(t)B,(t)' I B(t)B(t)'I ; Q,(0) --N (2.16e)

which isa matrix Riccati difference equation when (2.16b) is inserted.

As we shall see shortly, there are other realizations of y which

have (2.16a) as their Kalman-Bucy filter. Hence define S to be the

class of all realizations S of y such that R(t) :=

DCt)D(t)' > 0 A t e [0,T] and such that the corresponding Kalman-Bucy

filter is given by (2.16a), that is, it has the same matrix functions

F, H and K, :w BR, as those of (2.16a) and consequently the same esti-

mates {x*(t); t e [0,T+1]}.

The sequence {w,(t); t e [0,T)) defined by

w,(t) = R,(t) k[y(t) - HCt)x,(t)] (2.17)

is called the innovation process. It is a normalized white noise sat-

isfying (2.2) and characterized by the property H-(w,) a H_(y) for all

t C [0,T]. Combining (2.16a) and (2.17), we obtain the model

x,(t+l) - FCt)x,(t) + B,(t)w,(t) ; x,(0) Z 0
y(t) a H(t)x,(t) + R,(t) w,(t) ,

which clearly belongs to S. It can be immediately seen that the co-

variance matrix P.(t) :- E{x,(t)x,(t)'} of x,(t) satisfies

P,(t+l) F(t)P,(t)F(t)' + B,(t)B,(t)' ; P,(O) 0 (2.18b)
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and that

Q, = P - P, • (2.18c)

It is essential at this point to show that S, is uniquely defied

regardless of the choice of the S c S from which S, was formed, i.e.,

that the matrices B* and R, are both invariants for the class S (by

definition, F and H clearly are). To this end, we need to define the

n x m-matrix function

G = FPH' + BD' (2.19a)

for each realization S e S; P is its state covariance function.

Lemma 2.3. Let G, R, and B, be defined by (2.19a), (2.16c) and (2.16b)

respectively. Then G, R, and B* are invariante for the class S.

Proof. Let S c S be arbitrary and let G be as in (2.19a). Then

P = + P,. Also, by (2.16b), BD' = - FQH'. Inserting these two

relations into (2.19a), we obtain

G = FPH' + B*R , (2.19b)

which, by the definition of S, is invariant over S. Next, since

A(t) :x E{y(t)y(t)'1 - H(t)P(t)H(t)' + D(t)D(t)', R, - A - HP.H',

which does not depend on the choice of S, for A and P, do not. Finally,

since , -KR, (or B, - (G - FPH')R,), B, is also invariant over S. 0

Consequently, F, H, G, B. and R. are invariants for S, whereas

B, D, P, w and x will vary with different realizations S c S. Actually,
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even the dimension p of w will vary. However, since R is of full rank,

we will always have p a m.

The model S, belongs to a class of realizations for which p is

minimal, i.e., p = m. Define S to be the subclass of all S c S such

that p - m and x(O) e H(y). Let

{XoCt+l) =FX0(t) + BowCt) ; Xo(0) =(.
00O 0 (2.20)

0 yt) =HXoCt) + D w (t)

be a realization in S with state covariance P0. As DO is invertible,00 0

xo(t+l) = Fxo(t) + BoD1 [y(t) -Hxo(t)] ; x0 (0) =f o (2.21a)

Let (2.1) be an arbitrary realization in S and define

Q0i P P (2.21b)

Then, by (2.20) and Lemma 2.3,

R 0 a DODO' = A - HPoH' a HOHI + DDI (2.21c)

and

B z (G - FPoHI)Ro = (FH' + BD.)Ro. (2.21d)

Inserting (2.21d) into the equation (2.3) for P and subtracting from0

(2.3), we conclude that Qo satisfies

%(t+l) aF(t)o(t)F(t)' -Bo(t)Bo(t)' +B(t)B(t)' ; Qo(0) aN-N o . (2.21e)

Equations (2.21) look formally like the filtering equations (2.16), only

the initial conditions are different. In view of the assumption that

e Hey), (2.21a) implies H(xo) c H(y). We shall call a realization
00

S c S internal if it satisfies the condition H(x) c H(y) and eternal

otherwise [2].
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Therefore, by the above discussion, we have shown that all S c S0

are internal.

Our next task is to derive a backward realization 9 for each

S c S. We shall begin by restricting our attention to the subclass

S+ consisting of all S c S for which N > 0. The class S+ is nonempty.

This can be seen by using an argument similar to that in the continu-

ous-tiMe case [64]. The basic idea is that the stochastic process y

can be extended to an interval (,T] where f < 0 so that the covariance

matrix P(t) of a realization S of y on [f,T] is positive definite for

t e [0,T]. Hence, the restriction of S to [0,T] belongs to S+. (See

(64] and (73] for details.)

Let S e S+. Then, by Lemma 2.1,' (t-1) a P (t)-lxct) is defined

for every t i [0,T] and satisfies (2.8). It rmains to obtain a "back-

ward" equation for y.

Lmua 2.4. Lot y be given byj (2.lb). 2hen, y oan be written

y(t) G'(t)i(t) + 5(t)%(t) (2.22)

wh'e G i8 given by (2.19) and the m x p-ztrix ,unction Dis given by

[(t) - (D(t) - H((tFt)'B(t) [I - B(t) 'P(t+l) 1B(t)] (2.23)

Proof. Inserting (2.19a) into (2.1b), we get

y(t) - [G'(t)Fo (t)' P(t) "l - D(t)B(t)'F(t) "lP(t)fl]x(t) +DCt)w(t)
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From (2. 8),

x~t) Pt)F~t)P~t~l-l xtl ~)()dt

Using this expression for x(t) in the above equation for y, we obtain

after some lengthy algebraic manipulations

y(t) - GI(t) P(t+l) -1x(t+l) -G'Ct)P(t+l) IB(t)[w(t) -B(t)F'(tf 1lP(t)- 1xWt)

+ D~t)w(t) -D(t)B(t)tF'(t) 1iP(t)1 lx(t).

=G'(t)P~t~l)- x(t+l)

+ [D(t) -G'(t)P(t+lf 1lB(t)][w(t) -Btt)Ftt)liP~t)flxMt)

Using (2.19a) and adding and subtracting the quantity H~t)F(t)- B(t),

we get

D(t) -G(t)'P(t+l)- B(t)=

- D(t) -D(t)B(t)'P(t+l) -1B(t) -H(t)F(t)1iB(t) +H(t)F(t) 1Bit

- D(t) -D(t)B(t)"P(t+l) -1 B(t) -H(t)P(tf-1 B(t)

+ H(t)f1F~t)f1EP(t~l) -F(t)P(t)F(t)'JP(t~l)lB (t)

-[D(t) -H~t)F(t) -1B(t)J[I -B(t)'P(t~l)- B~t)]

where in the last step, we employed (2.3). Then, using the definition

(2.10) for Q, the desired -result follows. 01

Combining (2.8) and (2.22), we obtain the following backward

model

C~) 1(2.24)
y (t) G G(t) I i(t) +(tQ()



~m-r--_

71

where B, R and B are given by (2.9), (2.10) and (2.23) respectively

and = P(T+I) x(T+I) i H(Q). The state covariance function P(t) =

P(t+l) satisfies (2.11). We shall call any model of type (2.24)

with y as its output, i e H, for i*= 1, 2, ... , n, Q satisfying (2.2)

and i I H(Q) for all i, a backward realization of y. Note that S and

have the same state 8paces, i.e.,

HtCx) = Ht.(R) " (2.25)

for each t c [0,T+1].

It is essential at this point to show that the matrix A(t) :=

6(t)b(t)' is positive definite wherever the matrix R(t) := D(t)D(t)'

is. To this end, define the m x m-matrix functions

A = DD' - DB'FIH' (2.26)

A - (2.27)

Lena 2.5. Let A and A be defined by (2.26) and (2.27) respectively.

Then A - A'. Prthermore, A and A are both invariant" for the cZas8 S.

Proof. Inserting DD' - A - HPH' (by (2.16)) and DB' = G' - HPF'

(by (2.19a)) into (2.26), we obtain

A-A 0 -G'F"lH'  , (2.28)

0

which is invariant for S. Using (2.19a), (2.9) and (2.23), it can be

seen that the matrix function H can be written

H' - F'IG + 6' . (2.29)
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Now, by the above argument and (2.24), it easily follows that

= A - HF'G (2.30)

from which the lemma follows. [

Proposition 2.6. Let A and A be defined by (2.26) and (2.27) reepec-

tivel4y. Then, for each t c [0,T], the following tatements are equiva-

lent: () D(t)D(t)' > 0 (ii) ACt) is nonsingular, (iii) A(t) is

nonsingular, and (iv) 5(t)6(t)' > 0.

Proof. The equivalence between (i) and (ii) is proved by Pavon

([9;Theorm 3.2], [62)); this proof does not require stationarity. The

same argument can be used to prove the equivalence between (iii) and

(iv). Finally, the equivalence between (ii) and (iii) follows trivi-

ally from Lemma 2.5. 0

In analogy with the forward setting, the least-squares estimate

iCt) . {C(t) I H +1() (2.31)

is generated by the bacl oard Ka lmn-Bucy fiZter:

R,(-l -F~t ', t)+ #,(t)gCt) %[y~t) - G~t) 'lt) ] ; *, T) -O, (2.32a

where

4, = [F~,QIG + §6']A; , (2.32b)

ft - G'qG + D' , (2.32c)

(which, by Proposition 2.6, is positive definite for all t c [0,T]) and

the error covariance matrix function
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(t)= E{[RCt) - R*(t)][R(t) - R,(t)]'} (2.32d)

being the solution of the dual matrix Riccati equation

q*,(t -1) - F (t) I % t)F (t) - 9*,(t), A*t)' + B (t) 9 t)' ;,(T) - P (T+I)"  (2.32e)

with 1. given by (2.32b).

The back&xrd innovation procea Q, defined by

t = ,(t)'-[yCt) - G'(t)R,(t)] (2.33)

is a normalized white noise satisfying (2.2) and the condition

Hiw,) -- Hi(y). The covariance matrix P,(t) :- E{R,(t)i,(t)'} satisfies

the backward Liapunov equation

P,(t-l) -F (t) P, (t) F (t) + B, (t) R(t)' ; P(T) 0 (2.34)

Again, we need to show the invariance of the backward filter.

Lemma 2.7. Let A, and R, be given by (2.32c) and (2.32b) respectively.

Then,

A, 0 - G'PG (2.35)

and

B,-(HI - F'PG)R-h ( . 2.36)

i.e., , , and hen the model S, defined by (2.37) below, are all

invariante for the class S.

Proof. It is easy to see that (2.35) holds. As for ,, observe that

it can be written

(, F 'PG + 96' - FIP*G)RW
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from which (2.36) follows, upon using (2.29). Hence , does not depend

on 9 (consequently on the choice of S c S+.) 0

Now, in the same way as above, define S to be the class of all

backward realizations 9 having (2.32) as their backward Kalman-Bucy

filter, and let S+ be the subclass consisting of those 9 c S for which

:= E{Z'} > 0. In the same way as in the forward setting, it is seen

that the realization

i,(t-) = P'(t)i,(t) + B,(t),(t) ; i,(T) - 0(90,) (2.37)

)y(t) = G'(t)iCt) + 9,(t)hQ,(t)

belongs to S. By Lemma 2.7, the class S is uniquely defined in terms of

the invariants F, H, G and A0 , and therefore, the backward counterpart

. of any S £ S+ belongs to S. In particular, since P(T+I) is positive

definite and since P(T) = P(T+1) "1  9 e S+. Also, note that, by Pro-

position 2.6, D6' > 0 for all 9 e S+.

It is clear that there is a complete symmetry between forward

and backward realizations. In particular, the subclasses S+ and 

are in one-one correspondence. Therefore, in the following lemma, we

summarize the procedure for constructing a forward realization corres-

ponding to a backward one in S+. This lemma is the counterpart of

Lemma 2.1.

Lema 2.8. Let (2.24) be an arbitrary backuoxrd realization in S with

state process i and atate covariance function P. Then, the process x,

defined by
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x(t) = P(t-l)- X(t-1) (2.38)

for t E [0,T], aati8fies the forward recursion

x(t+l) = F(t)x(t) + B(t)w(t) ; x(O) w P(-1f)1 1(-1), (2.39a)

where

B(t) - -P(t)Y'F(t)"lJ(t)[I - BCt)IP~tll~(t)i (2.40)

and w is a p-dimenaionaZ normalized white noise aequence satisfying

(2.2) and the condition H+(w) L H.-(x) for all t c [O,T] and is given by

w~t) = [I - R(t) ' t1'~t][~)-l~)~)-pt'~t]•(2.41)

Moreover, the process y satisfies the recursion

y(t) = H(t)x(t) + D(t)w(t) , (2.39b)

where the matri function D is given by

D(t) [5(t) - G(t)'IF(t)"1l1(t)] [I - R(t)'IP(t-1)-19(t)] .(2.42)

Finally, if 9 4 S+, relations (2.38)-(2.43) hold for all t C [0,T), for

which P(t-l) -1 exists.

In the sequel, we shall be interested in obtaining the backward

(forward) counterpart of S, (,). As is clear by now, for this we need

to invert the matrices P,(t) in (2.18b) and P,(t-l) in (2.34). However,

since P,(O) - 0 and P,(T) = 0, P*l and P , will not exist on the whole

interval [0,T]; they may not even exist on part of it for that matter.

Therefore, we introduce the following

Definition 2.9. Let t, be the smallest t such that P,(t) > 0; if there

is no such t on [0,T], set t, :x T+l. Similarly, let i, be the largest
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t such that P,(t-1) > 0; if there is no such t, set t, = -1.

As is clear from the definition above, t and i. might lie out-

side the interval [0,T]. However, if we impose some more conditions

on the class S, we can ruarantee that t, and i, belong to [0,T].

Definition 2.10. The class S is said to be minimZl if there is no

realization of type (2.1), the state process of which has dimension

smaller than n.

Lema 2. 11. S is minimaZ if and only if S is minimaZ.

Proof. Let S be minimal. Assume that there is a backward realization

e S such that 9 is not minimal. Then all 9 in the (nonempty) sub-

class S+ are also nonminimal, and consequently, by Lemma 2.8, we could)+
construct a nonminimal forward realization from such an 8, contradict-

ing the minimality assumption of S. The converse follows analogously. 0

Lema ,2.12. Let S be minimal. Then t, : T and i, z o.

Proof. Since S, F S, S, is minimal. Hence, the pair (F,B,) is com-

pletely controllable on the interval [0,T] [63]. In fact, were this not

the case, the input-output map of S. could be reduced [4] contradictingI
minimality. Therefore, the controllability gramian

t,-l
W,(Ot4) I t(t*,j+l)B*(j)B*(j)l(t,.j+l)' (2.43)

j=O

.I _ .... ..... _ .....
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is positive definite for some t, c [0,T]. Consequently, upon writing

the solution P, of (2.18b) as in (2.5b), we see that P,(t) > 0 for all

t C [t,,T]. Now, if S is minimal, S is minimal also by Lemma 2.11.

Since 9, c 5, we can analogously show that 0 > O. 0

Of course, there is no guarantee that there is a t e [O,T] for

which both P,(t) and P,(t-1) are positive definite.

Definition 2.13. The class S is said to be regular if t, r i,+l, i.e.,

for each t c [O,T], either P,(t) > 0 or P,(t-1) > 0 (or both), and is

said to be irregular otherwise.

In fact, the regularity property of the class S depends to a

certain extent on the length of the interval [O,T]; for if T is suffi-

ciently large compared with n, S will be regular, since then the con-

trollability gramian (2.43) will eventually become positive definite;

the same holds in the backward direction for the controllability

gramian W,(T,i,) of 9,. If T < n, we will encounter irregularity; then

we do not have minimality either.

2.4. The Frame Space

Now, we are ready to justify introducing the two processes x. and

x,. It follows from (2.15) that

H£ (x,) Ht (x) I Hr~ (y))} - l
Alo, (x*) - E{2.25) and 21,e v(y)

Also, by (2.25) and (2.31), we have
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H i( ,) E ^{H t (x) I Hj(Y) c H(y) 78

for all t F [0,T]. Define the orthogonal complements
:= - - C y)Q

N_ : H_ (y) 0 Ht(x,) and N+ := Hr. (R,)

Then, H(y) can be decomposed as

H(y) = Nt * H' 9 N+  (2.44)
t t t'

where HO is the frame space [53,54,56]
t

HtO = Ht (x,) VFt_I (R,)  (2.45)

for all t c [O,T].

Lemma 2.14. Let x be the state process of a realization S c S. Then

Ht (x) c HO 0 [H(y)] (2.46)

for all t e [O,T].

Proof. See the proof of Lemma 3.7 in [64]. 0

Notice that therefore, the smoothing estimate (2.4) will always

be contained in the frame space, hence its importance.

In the continuous-time setting of our papers [64,65], the frame

space has the constant dimension 2n on the open interval (0,T). This

however will not be the case here, and this contributes to the fact that

the discrete-time results are nontrivial modifications of the continuous-

time ones. To see this, first note that the dimensions of Ht(x,) and

Htl(R*) can be related to the ranks of P, and P,, and hence to the con-

dition of regularity through the following
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Lemma 2.15. Let x be a stochastic vector with covariance P and let

H(x) be the span in H of its components. Then

dim H(x) - rank P . (2.47)

Proof. Set r := dim H(x) and let = be an orthonormal basis

in H(x). Then x = k + 2 + ... + Zr r for some i 12 "" I2.

Define the n X r-matrix L = (ZI 1 '2' " ''. ' " Then x = L , and hence

P = LL'. Consequently, rank P < r, with equality if and only if L is

full rank. But L must be full rank, because otherwise £ = r-1 a k
r k~l k k

for some al, a2, "'" JR. Then x = irI £i. where i

+ ai ; i = 1, 2, ... , r-l. Hence, H(x) is the span of the r-l random

variables , tr , which contradicts the fact that dim H(x) Er. 0

Consequently, the dimensions of Ht(x*) and Ht. I (Y. ) vary between

0 and n. When S is regular, the lemma implies that, for each t, at least

one of these spaces has dimension n and that there are some t's for

which both of them have dimension n. Consequently, for each t e [O,T],

n : dim H3 : 2n, where each limit is attained for some t. (To see this,
t

we note that under the given conditions, it can be shown that

Ht(x*) n Htl(R*) = {01.) On the other hand, if S is irregular,

dim Ho < n on the whole interval.
t

It will be more convenient in the sequel to express the frame

space H in a somewhat more symmetric form. To this end, we shall con-
t

struct the forward counterpart of 9.. However, since P,(t-1) is not



80

positive definite for every t e [0,T], the previous argument of con-

structing a backward realization from a forward one cannot be reversed

on the whole interval. Therefore, we apply the generalized Moore-

Penrose pseudo-inverse (see e.g. [13]).

Definition 2.16. Let P be any matrix. The generalized Moore-Peroee

pseudo-inverse P# of P is the unique matrix satisfying

(i) PPP - P, (ii) P#PP# = P#, (iii) (pp#)t = PP#, and

(iv) (P#P)t = P#P . (2.48)

(Hence, if P is nonsingular, P# = P-1.) In the sequel, we shall need

the following

Lemma 2.17. Let x be a stochastic vector with covariance matrix P.

Then

PP#x a x (2.49)

Proof. If x = 0, the statement is trivial; hence assume that x * 0.

By the Singular Value Decomposition Theorem [66], there exists an or-

thogonal matrix V (i.e., W' = I) such that P = V [c ]Vt where
Xi. "

P1 > 0. Then x can be written V [j] where x1 is stochastic vector

with covariance P1 . Also, it is easy to see that p# V [V '.

Relation (2.49) then follows by direct multiplication. D

Now, define

x*(t) - P,(t-1)#X.Ct-I) (2.50)

4-
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for each t c [0,T]. Then, premultiplying both sides of (2.50) by

P,(t-1) and applying Lemma 2.17, we obtain

'I ,R(t-l) - P*(t-l)x*(t) . (2.51)

Hence Ht(x*) = Ht..I(R*) and consequently, we have the following symme-

tric expression

Ht = Ht(x,) VHt(x*) (2.52)

for the frame space.

The next section will be devoted to finding a forward recursion

for x*.

Of course, we can equally well have a symmetric expression for

Ha involving two processes that are the states of backward realizationst

via

Ho H (R, VH. 1 ( * )  (2.53)

where * is defined by

R*Ct-1) = P*(t)#x*(t) (2.54)

for all t c [0,T].

2.5. The Model S*

The aim of this section is to construct and study the properties

of the model S* whose state process is x* defined by (2.50). As we

mentioned earlier, since , 4 S+, the forward-backward construction of

Lemmas 2.1 and 2.8 cannot be applied here. However, the basic idea of

the derivation is the same, but the results will be somewhat different.
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Although for our purposes we only need to construct the forward model

(S*) corresponding to (9*), nevertheless, and for completeness only,

we shall do the reverse procedure, i.e., also construct a backward model

corresponding to any S c S (note not in S+).

To do this, we need the following three lemmas. The first of

these is the natural generalization of Lemma 2.2 and can be found in

most standard texts. The other two are generalizations of results in

(9,67].

Lemma 2.18. Let u and v be two stochastic vectors with components in H.

Then

E{u I v} - E{uvt(.E{vv})#v . (2.SS)

Lemma 2.19. (a) Let P be the state covariance function of any S e S.

Then

P(t)F(t)' - P(t)F(t)'P(t+l)#P(t+l) (2.56)

foz aUZ t E [O,T).

(b) Let P be the state covariance f unction of any 9 c S.

Then

P(t)F~t) - P(t)FCt)PSCt-l)#PCt-l) (2.57)

for aZZ t c [0,T].

Proof. (a) Postmultiply both sides of (2.12) by x(t+l) and taking co-

variances, Lemma 2.18 and the fact that the components of x(t+l) are

orthogonal to those of the second term of the right-hand side of (2.12)
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yield (2.56).

(b) The proof is analogous to that of (a). 0

Lemma 2.20. Let P be a8 in the previou8 levIvn. Then

P(t+l)P(t+l)# B(t) - B(t) (2.58)

for aZl t e [0,T].

Proof. To prove this lemma, we follow [67). First, premultiply (2.1a)

by P(t+l)P(t+l)# to obtain

P(t+l)P(t+l)#x(t+l) =P(t+l)P(t+l)#F(t)x(t) +P(t+1)P(t+l)#B(t)w(t), (2.59)

and observe that the left-hand side of (2.59) is x(t+l) (by Lemma 2.17).

Next, reformulate (2.56) to read

P(t+l)P(t+l)#F(t)P(t) a F(t)P(t)

Postmultiplying this by P(t)#xCt) and using Lemma 2.17 again, we see that

the first term of the right-hand side of (2.59) is F(t)x(t). Comparing

(2.59) with (2.1a), one obtains

B(t)w(t) = P(t+l)P(t+l)#B(t)w(t)

which postmultiplied by w(t)' and taking expectations yields (2.58). [

Now, we are ready to state the first main result of this section,

which is the analogue of Lemma 2.1 and which provides us with a back-

ward counterpart of any S c S on the whole interval [0,T].
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Proposition 2.21. Let S be an arbitrary realization in S and let the

mahtrix function 0 be given by

0(t) = I + B(t)'F(t)' lP(t)OF(t)4lB~t) .(2.60)

Then S ha8 the following baa kxrd counterpartIx(t) Z P(t)P(t) tP(t+l)#x(t+1) + P(t)B(t)i'(t)

y(t) = G(t) 'x(t+1) + fi(t);i(t) (.1

on [0,T), where

B(t) = P~t)#F~tlB~t)[I - B(t)'P(t+1) #B~t)Joct) (2.62a)

5(t) [D~t) - Z~t)tP~t+1)$B~t)J0C(t) (2.62b)

a~t) =F(t)P(t)*P(t)F(t) 1G(t) (2.62c)

and Wi i8 a white noiee 8atiefying (2.2) 8uch that Ht_(,) Lj Hj(x) given

by,

q(t) = G(t)- [w(t) - B(t)'F(t)' lP(t)#x(t)) . (2.63)

Proof. Applying the orthogonal decomposition (2.12) to (2.1a), we

obtain

x(t) WP(t)F(t) 'P(t+1) x(t+1) + [x(t) - P(t)F(t) OP(t+l)#x(t+l) ] .(2.64)

Many, but straight-forward algebraic manipulations, applying Lotmas

2.17, 2.19 and 2.20, yield the first of relations (2.61). The argu-

ment of Lemma 2.4 can now be used to prove the second relation in

(2.61).0

Remark. If we define 2(t-1) x P(t) #x(t), we could, using (2.61), obtain

a backward model whose state is i; but the model obtained will not, in
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general, belong to S since P(t) P(t)F(t)' and G are not equal to F(t)'

and G. If P(t) > 0, (2.61) premultiplied by P(t) " will be (2.24).

Using an analogous argument in the backward setting, the following

proposition can be easily proved.

Proposition 2.22. Let 9, and x* be given by (2.37) and (2.50) respec-

tively and define 0* as

0S*(t) = I + A*(t)'F(t)flP *(t)#F(t)"W *(t) . (2.65)

Then x* is the state process of the foZZowing model, which is the for-

ward counterpart of ,

x* (t+l) =1 ([t~l) F(t) x* (t) + I (t+l) B* (t) w* (t) ;x* (0) =1,-#,(-1)

CS*) y(t) = H(t)x*(t) + R*(t) w*(t) , (2.66)

where
SB'(t) - -P,(t) # F(t) " ,(t) I - ,(t)'P, (t -1)#,(t)EO* (t) , (2. 67a)

R*(t) = [ .(t) - , , (2.67b)

H(t) "" H(t)F(t) -ll(t+l)F(t) ( (2.67c)

w* is a white noise satisfying (2.2) and the forward property

HjCw*) .L Htx*) given by

w*(t) - 0*Ct) , (t) - 9*(t)'F(t)-l .t)# *(t) , (2.68)

andt he n x n-matrixf uftion I is defined by

11(t) :- P*(t)P*(t)# , (2.69)

where P* i the covariance function of x*, i.e., P*(t) -E{x*(t)x*(t)I},

which satisfies the Liapunov type equation
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P*(t+l) =ll(t+l)F(t)P*(t)F(t) 'I(t+l) + B*(t)B*(t)' P*(O) *(-l)#. (2.70)

Proof. First, in a manner analogous to that of Proposition 2.21, it

can easily be seen that i, is the state process of the forward realiza-

tion

R,(t) - PCt)F(t)P,(t-1)# .,t-1) + P*(t)B*(t)w*(t)
1~L (2.71)

~y(t) A (t)p*(t-l) *(t-1) + R*(t)31w*(t) ,(2.71)

where B*, w*, H and R* are given above. Premultiply the first equation

in (2.71) by P*(t)#, observe that P*(t)# - P*(t+l) and use (2.SO),

(2.48), and (2.69) to obtain (2.66). Finally, (2.70) follows from the

state equation in (2.66). 0

The matrix function 11 defined by (2.69) will play an important

role in what follows. Relations (2.48) imply that 12 - n and that

1 a I', hence 11 is an orthogonal projection. Also, Lemma 2.17 yields

](t)x*(t) a x*(t) (2.72)

for all t e [0,T+1]. Finally, if S is minimal, S is also minimal

(Lemma2.11), inwhich case Lemma 2.12 guarantees the existence of a

i, c [0,T] such that P*(t) > 0 for all t c [0,J]. Then H E I on [0,*];

in this case, x* will satisfy a recursion of type (2.1a), and the fol-

lowing relation

P,(t) P~t) P*(t) (2.73)

holds for each such t. (In fact, P,(t) : P(t) holds for all t e [0,T].)

Finally, the following three lemmas will be needed in the sequel.
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Lemma 2.23. Let x be the state process and P the state covariance

function of any S E S+ and let x. and x* be defined by (2.15) and (2.50)

respectively. Then

E{x(t)x,(t)'} - P,(t) (2.74)

and

E{x(t)x*(t)ll - P(t)ll(t) . (2.75)

for all t c [O,T+1].

Proof. In view of the definition (2.15), Ht(x - x,) L Ht(x,) and

therefore, (2.74) follows. Since S c S+, S + S+ and hence the backward

counterpart of (2.74) reads E{R(t)*(,t)')1 uP,(t). But x*Ct)

P*(t),(t-1), and hence E{x(t)x*(t) ) - P(t)E{i(t-1)i*(t-l)t}P*(t),

which yields (2.75). 0

Lemma 2.24. Asswe that S is regular. Let x. and x* be defined by

(2.16) and (2.66) respectively. Then, for all t c [0,T+1],

E{x*(t) I x,(t)} = l(t)x,(t) (2.76)

and

E{x*(t)x*(t) '1 = P,(t)ll(t) . (2.77)

Proof. Since S is regular, the two intervals [O,t,] and [t,,T+l] cover

the whole interval [0,T+1]. On [O,i,], P*Ct-l) > 0, and consequently

S* has all the properties of realizations in S+ on that interval.

Since T B I on [0,i,], this implies that (2.76) and (2.77) hold there.
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Similarly, on [t.,T+l], P,(t) > 0, and therefore, analogously with the

above, E{i*(t-1)R*(t-l)l} z P.(t-1) on this interval. Premultiply this

by P*(t) and postmultiply by P.(t) and remembering that P.(t-1) a P*(t) #

(2.77) is seen to hold on [t.,T+l]. Then Lemma 2.18 provides the re-

quested formula (2.76) on this interval. 0

Lemma 2.25. Let S e S+ and let Q* be the covariance function of

ll(x* - x). Then

Q* = f(P* - P)II . (2.78)

If in addition S is regular, then

E{[x - x*][x* - x]'ITI = 0 . (2.79)

Proof. Relation (2.78) follows from (2.75). Relation (2.79) follows

from (2.74), (2.7S) and (2.77). 0

Remark. Since TI is projection, IIQ*I = Q*.

2.6. A Mayne-Fraser-Type Smoothing Forrula

Given the state process x and the output process y of a model

(2.1), the smoothing problem consists in determining the ewoothing

estimate

R(t) - E{x(t) I H(y)) (2.80)

of x and the smoothing error covariance

E(t) - E{[x(t) - R(t)][x(t) - R(t)]') (2.81)
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for all t e [O,T]. In this section, we shall derive a smoothing formula

for the case that S is regular. At the end of the section, we C'hall

present a conjecture which, if true, would allow us to remove this regu-

larity assumption. Our approach w.11 utilize an orthogonal decomposition

of the frame space HO to be given below.

In view of Lemma 2.14, R(t) c HO. In order to obtain a formula

for *, we need to decompose the frame space HO perpendicularly. To this

end, we introduce the process z defined by

z(t) " x*(t) - 1(t)x,(t) (2.82)

for all t c [0,T+l].

Lemma 2.26. A8sume that the cZaas S is re6u1,w. Let z be defined by

(2.82), and let Q(t) :- E{z(t)z(t)'). Then

- Ht x,) 0 t(z) (2.83)

for all t £ [0,T+l1. Moreover,

Q = 1IP* - P,)IT (2.84)

and
Q T (Q, + Q*)fT (2.8S)

where O* and Q* are given by (2.18c) and (2.78) respectively and P is

the state covariance of any S c S.

Proof. Since S is regular, Lemra 2.24 implies that the components of z

are orthogonal to those of x*, and therefore (2.83) follows from (2.52).

Next, since x* LjX*, 2z • (x* - x,). Then (2.84) is a direct
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consequence of (2.77). Finally, write Q = 1(P* - P + P - P,)H to obtain

(2.85). 0

Lemma 2.27. Let z be given by (2.82) and Q be ite covariance function.

Then

Q = Q -Qn -11QT, (2.86a)

Q# fIQ# Q# 11Q#l (2.86b)

and

QQ# - Q#Q. 1. (2.86c)

Proof. We shall first show that Q = IQI and Q# = Q#n, the first of

which follows trivially from (2.84) and the fact that n is a projection.

For the second relation, let t e [O,T] be fixed. The case P*(t) - 0

is trivial (for then Q(t) = 0 and H(t) = 0); hence we shall assume that

P*(t) * 0. As mentioned in Lemma 2.17, there exists an orthogonal

matrix V such that P*(t) = V0(t) 5V' where P* > 0. Then P*(t) #

V[*(t)*l { Vt and 1(t) a V 0 Vt. In view of the fact that Q a RQI,

Q(t) can be written Q(t) = V[i(t) 0 V'. We want to show that Q(t) > O.

But in view of (2.85), this must be the case, because if we choose S in

S,, Q,(t) > 0 and Q*(t) k 0. Hence Q(t)# a Vf (t)'l o0Vt and conse-

quently, Q# = Q#1. From the above discussion it is clear that (2.86c)

holds. The rest of relations (2.86) follow trivially by remembering

that 11 is a projection. 0

Now, we are ready to present the main result of this chapter.
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Theorem 2.28. Aeswne that ;he cZass S is reguZar. Let x be the stare

proce~s of any S of cZa88 S+, Then the swothing estinrte (2.80) is

given by

X(t) = - Q*(t)QCt)#)x*(t) + Q*(t)Q#(t)x*(t) (2.87)

and the cflor covariance (2.81) by

E(t) = Q,(t) - Q*(t)Q(t)#Q*(t) (2.88)

for al t c [0,T+1].

Proof. Since X(t) = E{x(t) I HO) (Lemma 2.14), (2.83) yields

i(t) = E{x(t) I x,(t) + A{x(t) I z(t)}

which upon using (2.15) and Lemma 2.18 can be written

X(t) = xCt) + E{x(t)z(t)'}Q(t)#z(t)

In view of (2.74) and (2.75), E{x(t)z(t)'} a Q,(t)ll(t). Since z 1 1z,

(2.87) follows from the above relation noting (2.86). To prove (2.88),

observe that

x - = (I - Q*Q#)(x - x,) + Q*Q(x - x*)

Replacing (t by OQ#I, and noting that the two terms above are, in view

of (2.79), orthogonal, we obtain

z = Q, - Q*I[Q#lIQ, - Q*Iq#IIQ*

+ Q*nIq#IQiiQIQ* + Q*lQ#nQ*IQ#IIQ,

which, in view of (2.85) and (2.86), yields (2.88). 0
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To obtain the discrete-time version of the Mayne-Fraser formula

t38,39], the following lemma is needed.

Lemma 2.29. Let S e S+. hen, for each t e [0,T+l], Q,(t) and E(t)

are positive definite and satisfy

EW)" - Q.(t) -1 + Q*(t)# (2.89)

waher'e Q* is given by, (2.78).

Proof. Let P be the covariance function of S. Since S c S+, Q,(0) -

P(0) - P,(O) = N > 0, consequently Q(t) > 0 for all t c [O,T+l]. To

see this, observe that the Riccati equation (2.16e) can be reformulated

to read

Q(t+l) - r.(t)Q*(t)r*ct),
+ CB. Ct)R* Ct)_- Ct) - BCt) C( C(t). C) AD Ct) -Bat))'-, (2.90)

where r. is the feedback matri

r, a F - BR,'H . (2.91)

The Liapunov-type equation (2.90) can be written in the form (2.5b) to

yield 0.(t) > 0 for all t c [0,T+1], since Q.(0) > 0. The same argu-

emtn can be used to prove that E > 0: first determine Z from the

Liapunov-type equation corresponding to the backward representation

(2.115)below (the proof of which, of course, does not depend on this

lemma); then, as above, note that for all t e [0,T], E(t) z Z(T+l)

Q,(T+l) > 0. This proves the positivity of E. Next, it follows from

(2.88) that
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I- QQ# QI (2.92)

which is nonsingular for all t c [0,T+1]. Then applying the matrix

inversion lemma (1.34) to (2.88), it is seen that E-1= Q + Z, where

Z X Q # Q(I - QQ# (I - Q#Q)-IQ# (2.93)

Therefore, it just remains to show that Z = Q*#. Since 11 is a projec-

tion, (2.85) yields

Q* Q Q - Q, . (2.94)

In view of Lemma 2.27, (2.94) and the first of relations (2.93) yield

Q*Z = 11, which is symmetric. Likewise, using the second of relations

(2.93), we obtain ZQ* a 1. Then, Lemma 2.27 implies that Q*ZQ* - Q*

and ZQ*Z - Z also. Consequently, by Definition 2.16, Z = Q*#. 0

Now, we are in a position to state the tyne-Fraser two-filter

formula.

Theorem 2.30. Let S be regular and let S c S+. Then the soothing

estizte R of the state x of S is given by

X(t) - E(t)tQ(t) t) + Q*(tx*t) (2.95)

where x, x* and Z are given by (2.16), (2.66) and (2.89) respectively.

Proof. It follows from (2.89) and (2.92) that Q*Q# - I - E -

E Z(1 - l) - EQ,#. This together with (2.92) yields (2.95) when

inserted in (2.88). 0

. . . . .. . . .I
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Although the regularity assumption imposed on the class S is not

a very stringent one (especially if T is large enough in comparison with

n), it would be interesting to see if it can be removed. Actually,

this assumption was introduced onZy to obtain relation (2.76). We be-

lieve that (2.76) holds without the regularity assumption; as expressed

in the following

Conjecture. Let x, and x* be defined by (2.15) and (2.50) respectively.

Then

E{x*(t) I x,(t)} - l(t)x,(t) . (2.96)

Justification. First, note that A{x*(t) I x(t)} E{x*(t) IH_1Cy)1.

To see this, note that H=(y) H tx*) N where N.L Htx*), for

N I HO. Now, let x+ be defined by
t

X+(t~l) - F(t)x+(t) + B*(t)w*(t)(s+)  (2.97)
){(t) H(t)x+(t) + R*(t) w*(t) (

Then, noting that (2.57) implies l(t+l)F(t)II(t) w II(t+l)F(t) and

A(t) - H(t)TI(t), we obtain

x*(t) - R(t)x+(t) . (2.98)

Hence, (2.96) is equivalent to showing that X+(t) :=

E{x+(t) I H__I(y)} a x,(t) . But '+(t) is generated by the Kalman-

Bucy filter

+(t+l) -F(t) Ct) + Kt) ) [yt) -fCt) *Ct)] ; (0) - o, (2.99)

where K is the gain function and R+ is given by

R A -HPH' P (2.100)0
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Ao(t) - E{y(t)y(t)'} and P(t) - E{(- (t)X+t)'). Using the output

equations of (2.18a) and (2.91) alternatively to compute E(y(t) I H :(y)),

we easily see that

Hx, * , (2.101)

which implies that HPH' - HI'. Hence R - R. and the process

R(t)[y(t) - R(t); (t)] is the innovation process w.(t) defined by

(2.17). To justify the conjecture, it then only remains to show that

the gain functions K and B, are the same. Due to time limitations, we

shall leave this open. 11

2.7. The Bryson-Frazier Formulation

In this section we shall derive the discrete-time version of the

Bryson-Frazier smoothing formula [35]. This will be done by using a

procedure, based on an orthogonal decomposition of H(y), which does not

require that S be regular. Then the smoothing formula of Rauch, Tung

and Striebel [36] will be obtained as a corollary.

Since H(y) - H(w,) a H.(w , ) 0 Hi(w,) (for w, is a white noise)

and H_-(w.) H . l (y)

H(y) - H_1 (y) * Ht(w,) , '(2.102)

and consequently, (2.80) yields

'Ct) - A{x(t) I H.Cy)} * -{x(t) I H(w,)},

E(
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which in view of (2.15) and the orthogonality between x,(t) and H+(w,)t

can be written

w(t) - x,(t) + E{zCt) I H+(w,) (2.103)

where

z,(t) - x(t) - xCt) . (2.104)

This stochastic process satisfies the forward recursion

z,(t+l) =r,(t)z,(t) + (B(t) - B,(t)R,(t)'lIDCt)]wCt), (2.105)

where r, is the feedback matrix function (2.91). To see this, first

note that (2.16a) can be written

x,(t+1) - r,(t)x,(t) + B,(t)R,(t) _y(t) ;

then insert (2.1b) into this and subtract from (2.1a) to obtain 2.105).

Moreover, we see that the covariance function of z* is precisely Q, as

defin)d in Section 2.3.

However, to evaluate the second term of (2.103) we shall need

the backward counterpart of (2.105), in the sense of Section 2.5.

Modulo a complete description of the exogeneous noise v, such a back-

ward representation was provided by Pavon in (9].

Lemma 2.31. ([9]) Let x be the state process of any realization in

S and let P be its covariance function. Then the process z, defined by

(2,104) satisfies the backward recursion

z,(t) -Q,*(t)r,*(t),Q,*t+l)#Z*(t+l) + Q, t)H~t) 'R,(t)'l w,(t)+v)(t) (2.106)

where r, and Q, are given by (2.91) and (2.18b) respectively and v is an

(unnormalized) white noise whose components are contained in [H(y)]
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ReZation (2.106) is a baocind representation in the sense that

Hj(w*,v) i H:(z,) for cZZ t e [0,T].

Equation (2.106) was derived in [9] by first noting that it is

no restriction to assume that the basic Hilbert space H can be written

H a H(y) 0 H(n), where fl is an n-dimensional white noise process of

type (2.2) such that H (ri) i H+(z,) for all t c [0,T]. In fact, such

a framework is sufficient for representing the state, output and input

processes. Next, it was seen that w, and n could be regarded as outputs

of a forward realization with (2.105) as its state equation; the white

noise character of the o.tput modifies the construction of a backward

representation.

An alternacive derivation of Lemma 2.31, which in addition pro-

vides a complete char:tcterization of the process v, can be obtained

along the lines of Theorem 4.3 in our continuous-time paper (64]:

First note that, Zor each t c (0,T], there is an orthogonal p x p-matrix

V(t) such that
B(tj' B(t) B (t

LD(t I t (0 V (2.106)

where B1 is n x m and B2 is n x (p - m). Let

E] = Vw (2.107)

define a pair of mutually uncorrelated white noise processes u and v
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of dimensions m and p - a respectively. Then Bw u B u + B2 v and Dw

R%, and (2.105) can be written

Z*(t+l) a r*(t)z.(t) - r.(t)Q*(t)H(t), R (t)- u(t) + B2 (t)v(t). (2.108)

To see this, first use (2.16c) to see that RIR - I - RIHQH' and

(2.16b) to see that B1R" - BR,% a -FQH'; from this it is easy to see

that B1 - BRIR - -r,QH,. Given (2.108), Lemma 2.31 follows from

the appropriate modifications of Proposition 2.21 and some tedious

calculation. This also provides an expression for v in terms of v and

z,, which is useful in obtaining a representation for the smoothing

error, such as the one in Theorem 4.3 in (64].

Now, we are ready to state the main result of this section. To

simplify notations, we introduce the process {r(t) ; t £ [0,T+1]}

defined by

r(t) :E (t) I Hj(w)} (2.109)

Since w, is defined only on [0,T], set r(T+l) - 0.

Theorem 2.32. Let x be the state process of any S c S with state

covariance fnction P and let 2 be the corresponding smoothing eeti-

ute (2.80). Then, for all t E [0,T],

X(t) = x,(t) + r(t) (2.110)

where r is defined by (2.109) and satiefies the backward recursion

r(t) = Q*(t)r,(t),Q*(t+l)#r(t+l)+Q*(t)H(t)'R*(t) -w,(t)

r(T+l) = 0. (2.111)
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Proof. In view of the definition (2.109), (2.110) is the same as

(2.103). Next, since the components of v are orthogonal to H(w,),

(2.111) follows trivially from Leona 2.31. 0

Remark. Relations (2.110) and (2.111) imply that the covariance matrix

E(T+l) - Q CT+I), which, in view of Lema 2.29, is positive definite

if S a S+.

The Bryson-Froaier formula [35] can now be obtained from the

above theorem.

Corollary 2.33. ,et x be the state prooee of a realixation S e S+.

Then the smoothing est iate 2 satisfies

X(t) - x,(t) + Q,(t)!(t-1) (2.112)

where x, and Q, are given by (2.16) and 1 satisfies

£(-l =r,(t)'1(t) + H(t)'R,(t)-hw,(t) ; (T) -0 .(2.113)

27w process i s8 related to r through

i(t-l) - Q, (t)'lrt) (2.n4)

Proof. Since S c S+, Q,(t) > 0 for all t £ [0,T+I] (Lemma 2.29) and

consequently, the process i given by (2.114) is well-defined. Then the

result follows from the theorem. 0

Finally, to obtain the result of Rauch et al [36], the following

proposition is needed.
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Proposition 2.34. Let S 4E£, aped Zet x be its state process. Then the

ercothiq estiate ^X satisfies the diff.'em ei. quation

) (t B() (- (tl) R* (t4.~) 9 211

sut +tn F(t)D(t) iR(t- int Htx()-~tO*tFt'() (2.11S))w bti

where

Proof.Writig (2.11)8)

- B(tl) a (tl() + B*(t),(t)(216

uowinsh ertugr(s11)ont (2.18) d ig(2.1so.91 tod elimainad~

wetrctn get*t!t-)i 216) eoti

- (t) SFCt)'i(t)f*(t)w+ ,(t)Q(Ft)!)

Ninserting (2.113n2.1) andusn (2.17) ito theaslimtrs ftiaexprsio

and cancelling similar terms,_we see that

P4(t) - -B(t)D(t) 'R.(tf1 D~t)B(t) 'Z(t)+ '1~)1*t- y~)-~~*t HtQ*tFtt() 219
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which immediately yields (2.115). 0

Now, let BD' a 0; this is a basic assumption in [36]. Then

(2.11S) reduces to

x(t+l) - F(t)£(t) + B(t)B(t)'1(t) ; R(T+l) a x.(T+l)

q which, in view of (2.116), becomes

A .1 [A t, X(t)-(t+l)-F~t)xCt)+B~t)B~t) ' tQ )l[l-t+l)-l ] ; %(T+1)-x.CT+l)•

(2.120)

Corollary 2.35. Let x be the state process of any S e S+ and let

BDI - 0. Then, the smoothing Xetinbrte x can be written

t) -x~tlt) +P tIt) Ft),[F~t) P~t t) F~t)'+B t)lt)']-1 [Ct+l)-F(t)x(tIt)]

X (T+l) - x, CT+l) (2.121)

where x(tlt) is the filter ft{x(t) I H;(y)} adP(tit) is its error co-

variance matrix, i.e., PCtit) - E{[x(t) - x(tjt)][xCt) - xtlt)]'}.

Proof. First, solve (2.120) for R(t) in terms of X(t+1), add and sub-

tract F(t)- x,(t+l) and rearrange terms to obtain

x(t)-F (t)- "X,(t+l) +[F (t)'- t "B (t) Bet) 'Q, t+l) -I] [A(t+l) -X,(t+l) ].

This can be rewritten as

-lt Ft -11x~t -Ft'X, t+l) + F~t) "I [Q, (t+l) - n~t)B~t] ']F~t)"i F(t),

-1 A (2.122)(• [,(t+l) - Bet)B (t)' + B~t)B~t) ']' [x(t+l) - x*(t+l)].

It is well-known and easy to see that the one step predictor x,(t+l) and

the filter x(tlt) are related by
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x,(t 1) - FCt)x(tlt) (2.124)

and that the corresponding error covariances satisfy the relation

Q,(t+l) - F(t)P(tjt)F(t)' + B(t)B(t)' . (2.12S)

Finally, note that (2.124) and (2.125) may be reformulated as

-1x~t~t) a F(t)'IX, t+l)

and

P(tt) F(t) [Q C(t+l) - B(t)B(t)']F(t)'

which, inserted into (2.122), yields (2.121). 0

Relation (2.121) is the formula of Rauch, Tung and Striebel

presented in (36].

It remains to clarify the connections between the results of

Sections 2.6 and 2.7. Note that the two-filter formula (2.87) can

be written

2(t) a x,(t) + Q*(t)Q(t)#ZCt)

where z is defined by (2.82). Comparing this with (2.112), it is seen

that we need to prove that

i(t-l) a Q(t)#z(t)

analogously with the continuous-time setting [64,65]. The problems

encountered in trying to show this are similar to those of proving the

conjecture in Section 2.6, and due to time limitations, we are leaving

this question for a future paper.



CHAPTER 3

TOPICS ON THE STOCHASTIC REALIZATION PROBLEM FOR'
CONTINUOUS-TIME NONSTATIONARY STOCHASTIC PROCESSES

3.1. Introduction

Let the Hilbert space H be as defined in Section 2.2. In this

chapter, the following notations will be adopted. For any n-dimensional

stochastic process z, Ht(z) will denote the (closed) subspace spanned

by the random variables {z1(t), z2 (t), ... , zn(t)}. Let H(z) and the

past spaces H;(z) and H (tot](z) be defined as VTCI HT(z), where the

interval I is (--= ), (-,t] and [to,t] respectively. The future spaces

H ttl](z) and H+(z) are defined analogously. Sometimes, we shall be

interested in spaces spanned by the incrementa of z. Hence, we de-

fine H(dz), H-(dz) and H+(dz) to be the closed linear hulls in H of

(z(s) - z(r); s, r c II, where the interval I is (-co), (-c,t] and

(t,-) respectively.

Let {x(t); t R} and {y(t); t c R} be two stochastic processes

of dimensions n and m respectively, defined as the solution of the

linear stochastic system

103
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S dx = F(t)x(t)dt + B(t)dw (3.la)
(S) -

dy = H(t)x(t)dt + D(t)dw

where w is a vector process, of dimension p k m, with orthogonal in-

crements such that

E{dw} - 0 ; E{dwdw'} - I dt (3.2)

and H;(dw) . Ht(x) for all t e 1R. The matrix R(t) := D(t)D(t)' is.

positive definite on R, the matrix F~t) is uniformly asymptotically

stable on R and F, B, H, D and R-1 are matrices of bounded and analy-

tic functions. As before, the process x is called the state of the

model S, y is the output and w is the inpust. We shall assume the

model S to be minimal in the sense that there is no other model of the

form (3.1) with the process y as its output and with a state process x

of smaller dimension than n. The stochastic realization problem con-

sists of finding all possible stochastic systems (3.1) (belonging to

a class S to be prescribed below) having the process {y(t); t e IR} as

their output. Each such model S will be called a stochastic realiza-

tion of y; In particular, S is minimal and analytic, i.e., F, B, H,

D and R"I are analytic on 3R.

For each t e IR, there exists an orthogonal matrix V(t) such that

= V(t) (3.3)
iLDCt)j Lit

where B is n x m andB is n x (p - mr). It is no restriction to takeB1 B2

V(t) - I. Next, let

dw (3.4)

r1
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define a pair of orthogonal increment processes u and v, of dimensions

m and p - m respectively. It is obvious that (3.4) satisfies (3.2).

Accordingly, we have reduced the problem to that of finding all admiss-

able models S of the type{ dx a F(t)x(t)dt + Bl(t)du + B2 (t)dv (3.Sa)

dy - H(t)x(t)dt + R(t)h du , (3.Sb)

having the process {y(t); t c R} as an output. Clearly, the matrix

function P(t) := E{x(t)x(t)'} satisfies the differential equation

P FP + PF, + B B + B2B1 (3.6)

on 3R. We shall call P the state covariance function of S.

As we have seen in the previous chapters, it is sometimes more

convenient to use a backward representation for the state process x.

To do this, we need to invert the matrix function P. Since S is mini-

mal, (F,B) must be completely controllable [4,63]. Since in addition,

F and B are analytic, (F,B) must be totally controllable [68,69].

With this condition satisfied, it is not hard to prove that P(t) must

be positive definite for all t e R (see [71; p.28]). Then, the process

R(t) = P(t)-1 x(t) (3.7)

is well-defined with components in H. Let P be its covariance function

P(t) = E{R(t)R(t)'} . (3.8)

The following lemma, the proof of which can be found in [64], is the

analogue of Lemma 2.1.

Lemma 3.1. Let x be the state process of an arbitrary realization

(3.5) with state covariance P. Then the process R defined by (3.7)
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satisfies the backward model

i- -F(t)' R(t)dt + I(t)dt (3.9a)

for alZ t e IR, where P - B and % is a p-dimensional orthogonaZ in-

cwements process satisfying (3.2) and the ondition H;(di) . H; Cx) for

aZl t e R. The increments of ri [ are given by

d Fd u - B'P1l x dt(.bd IuI-1 1 (3.9b)

d v - BP " x dt

and the coavariance function (3.8) by P 1 it aatisfies

-F'P - PF 91- .(3.10)

To obtain a backward realization for y, insert (3.9) in (3.5b) to

get dy - (HP + R BJ)i + R~di. Then, defining 9, and 92 to be P'lB1 and

P'1 B2 respectively, Lemma 3.1 yields

dR -F'(t)i(t)dt + A1 (t)di + 92(t)d(.

dy = G'(t)R(t)dt + R(t)di

where the n x m-matrix function G is defined by

G = PH + BR . (3.12)1

Note that (3.5) and (3.11) have the same state space, i.e.,

Ht (x) = Ht(R) (3.13)

for each t e R . We shall call any model of type (3.11) with y as its

output, and Ht(d%) . H+() for each t e JR a backward realization of

{y(t); t 4 ]R}. Note that 9 is also analytic.
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3.2. The Finite Interval Case: A Review

In order to complete the statement of the realization problem

indicated in Section 3.1, we shall have to specify the classes S

and S to which the realizations (3.5) and (3.11) respectively belong.

To this end, we shall first restrict ourselves to the finite intetrval

[to-tl], whore to and t1 are arbitrary elements of IR. Realization

theory for processes defined on a finite interval was developed in our

papers (64,65] (this is the continuous-time version of the theory of

Chapter 2) and next we shall briefly review some facts from it.

Hence we shall consider models

dx - F(t)x(t)dt + Bl (t)du + B2 (t)dv ; x(to)
(S) (3.14)

dy - H(t)x(t)dt + R(t)zdu

of type (3.5) but defined on the finite interval [to't1]. We shall

call such representations stochastic realizations of {y(t); t c [to,t 1 ]}.

Note that it is now necessary to specify the initial condition ; dif-

ferent will define different realizations S. If N := E{ '} is

positive definite, x(to) can be thought of as being generated by a

model (3.S) on the interval (-ao,to]; consequently, (3.14) is merely a

restriction of (3.5) to the interval (to,tl]. However, note that the

class (3.14) also contains realizations S such that N is singular

(even zero); then there is no such interpretation, and we shall have

to take some care in defining the corresponding backward model.

The linear least-squares estimate

X*(t;to) = -{x(t) I Hto,t]()} (3.15)
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of the state process x. of S is generated on [to 't 1  by the Wman-Bucy

fiztei'

dx*Ct;tO) - F(t)x*Ct,t0 )dt + B*(t,to )du*Ct,tO) ;X*(t0 ;t 0) 0 (3.16a)

where

du*Ct,t, R(t)f"(dy - H~t)x*Ct;t0 )dt] .(3.16b)

4 The matrix function B*, called the Kalman gain is given by

B*Q(Cttt)H(t)'R(t) + B (t) ,(3.16c)

the error covariance matrix

Q*(t,t0): E{(x(t) - x*Ct;t )flx(t) - x*(t;t 0 )' (3.16d)

being the solution of the matrix Riccati equation

=~ Fct)Q*ctlt) + Q*(t,t )F(t), B*(t~t )B*(t't0) ~)~)

t) P(t) 
(3. 16e)

with B* given by (3.16c).

Let P*(t,t 0): E{x*Ct;t 0 )x*Ct;t 0)l Then, it is easy to see that

P*(t,t0) - P(t) -Q*(t~t 0 ) (3.17)

for all t e (t 0 tl] and that

dP*.(t,t ) _F(t)p*(t,t ) +P*(t,t )F(t)' +B*(t,t )B*Ct,t0) P*(t 0, 0  S0

(3.18)

The representation (3.14) is not the only model defined 
on [t0 ,tl]

that has (3.16a) as its Kalman-Bucy filter. Hence, define S~t0,tl] to

be the class of all analytic realizations S of {y(t); t 
6 [t0, t11}

which has (3.16a) as its Kalman-Bucy filter on [t0,tl]. 
Since we are
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only considering proper [2] realizations, not only F, H, R and B,, but

also the estimates x,(t;t 0 ) will be the same. Of course, different

S C S[to,tl] will have different state processes x and different Q,, B,

w and P. Rewriting (3.16b) to obtain an expression for dy, it is easy

to see that (3.16a) and (3.16b) together define a realization in

$[to,tl] ; we shall call it S,(to,tl).

Now for any realization S c S(t 0,tl, the n x m-matrix function G

defined by (3.12) is invariant for the class S. To see this, note that

(3.16c) and (3.17) yield that

G(t) = P(t,t 0 )H(t)' + B(t,t0 )RCt) , (3.19)

and that

B,(t,to) - (G(t) - P,(t,to)H(t) ')R(t) 
"  (3.20)

Therefore, (3.18) may be written

dP
:-tX (t,to) = A(t,P,(t,to)) ; P,(to,to) • 0, (3.21)

where A is defined by

ACt,P) = F(t)P + PP(t)' + (G(t) - PH(t)')R(t)l (G(t) - PH(t)')'.

(3.22)

Let S+[to,t ] denote the subclass of all realizations in

S t 1)tl] such that N > 0. For such an S the construction of backward

realizations presented in Section 3.1 remains valid, for I will be well-

defined on the whole interval (t0,tl]. Then, by symmetry with the

forward setting, we can now see that, given an arbitrary backward reali-

zation S e S+[to,tl], the estimate

-,(t;tl ) E{x(t) H ([t,tl] 3.23)
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of the process I is generated on [t 0,tl] by the backard XaZman-&Bac

filter

d3E*Ct;t 1 ) a -F(tpi1'kCt;t 1)dt + §*Ct,t 1)dtl*Ct,t 1) ; (t 1 ;tl) a0, (3. 24a)

where

dri*Ct,t) I R~t)f (dy - G~t)'iE*Ct;t 1)dt] ( 3.24b)

The matrix function S* is given by

where

- -1(t P(t 1  P(tl)- ( 3. 24d)

Here, of course, O is the error covariance matrix

Let P*(t,tl) := E{i*Ct;tl)i*Ct;tl)'}. Then

=*t~l - (t) - V~t't1  (3.25)

for all t e [t ,t 1 and

ftt) A~t,P*Ct't1)) ;P*(t1,t1) =0 , (3.26)

where Ais given by

-1A(t,P) - F(t) 'P + PF~t) + (H(t) I - PG(t))R(t) (H(t)'I - PG(t))' (3.27)

It can be shown that the matrix function §* is invariant over the

class S~t 0 ,t] (cf. Lemma 2.5). Hence the backward filter (3.24a) is

invariant also. Now, define S[t 0 ,tl] to be the class of all analytic
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Kalman-Bucy filter.

Analogously to the forward setting, it is seen that (3.24a) and

(3.24b) properly reformulated, constitute a realization in [t 0 't 1 ]; it

will here be called 9*t 0 t 1).

We wish to construct the forward counterpart S*(t 0,t I) of

9*(t 0 t i). However, we now run into problems, because P*(t1) a 0 so

that the (reverse of the) construction in Section 3.1 is no longer

valid. But, as shown in [64,6S], the minimality and analyticity of

Simplies that P* :P 1 is well-defined on [t0,t1-e] for all e > 0,

and hence so is x* - Consequently, we can define the model

on any such interval; such a realization is called a genex'aliad reali-

zation of {y(t); t e [t 0 ,tl 1 . (See (64,65].) Here

i B*Ct,tl) - -CQ*Ct,t1)H(t)?R(t) B(t)) , (3.28b)

with Q* satisfying

(Q*t t1) P*t,t 1) -1 - P (t) .(3.28c)

Let P*Ct,t1): E{x*(t;t 1 )x*t;tl)'}. Then, it can be seen that

P*(t,t 1) =PWt + Q*(t,t 1 ) (3.29)

and that
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Pt tl) - *(t,P(t,tl)) ;P*(to,t1) -P*Cto,tl)-l (3.30)

As we have seen in Chapter 2, since Q*(t,to) • 0 and

,(t~t 1 ) k 0, it can be easily seen that for all t c [toptl],

P,(t,to) S P(t) I P*(t,t ) . (3.31)

Hence the models S, and S* are called the minimum-variance and the

maximum-variance respectively (cf. (64,65]).

Finally, we recall that these two models S. and S*, contain all

the information on y that is needed to estimate x. Consequently, as

was done in Chapter 2 and in (64,65], it is seen that the smoothing

eatvinate

x(t;tot 1) - E{x(t) I Ht (,t1 CY)l} (3.32)

of the state process x of any realization S c S+[to,tl] is given by

X(t;totl) [I -O t'to)Q(t~to'tl)'l]x,(t;to) +

+ Q(t,to)Q(t,to,t I ) Ix*(t;t )
.33)

on [totl), where

Q(t,totl) = P*(t,tl) - P(t,to) (3.34)

3.3. Stochastic Realizations on IR

In this section, we shall let to + - and t I  =. Consequently,

we shall extend the discussion of the previous section to the infinite1interval setting of Section 3.1.

Since, for each fixed t e R, the process {x.(t;-T); Ta -t} is a

uniformly integrable wide sense martingale (70], x.(t;t0 ) tends to a
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limit x.(t) :~E{X~t) V tontH Et 0,t](y)) in mean square as to 0

(cf. [2; p.378]). But VtotH (tot](W - H;(y) and consequently

x*(t) - E{x(t) IHt(y)) (3.3S)

for all t e JR. Then u*Ct,t 0) tends to a limit process

{u*(t); t c R) which satisfies (3.2), for u*(t,t 0) satisfies (3.2).

Since x*Ct;t 0) + .x*(t), P*(t,t0 ) and B*(t,t0) as given by (3.17) and

(3.20) tend to the limits P*(t) and B*(t) respectively. Consequently,

x* and u*, mist satisfy

dx*(t) - F(t)x*(t)dt + B*(t)R(t)-j1dy - H(t)x*(t) dt] (3.36)

for each t c 3R. Now, we define S to be the class of all analytic

realizations (3.5) of {y(t); t c IRI whose Kalman-Bucy filter on any

interval [t 0 ,t 1 ] tends to (3.36) (in the obvious sense) as t 0 -l -

and as t1 -0-Mo* It is easy to see that (3.36) may be reformulated to

yield the model

fdx* - Fx~dt + B~du*

() dy = Hx~dt + 11. 3.7

Leat A{X*(t) Htp(y)} be denoted 2*(tt ) Then, by a similar

argument to that leading to (3.3S), the limit in mean square of

9*Ct;t ) as t0 *- is seen to be E{x*(t) I H-(y)}, which is x*(t).

Since, in addition S* is minimal and analytic, this implies the model

S* belongs to S.

The following proposition summarizes the pertinent facts about

the model S*. The results are obtained from the corresponding finite

interval results by merely taking the appropriate limits as
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explained above. It is the nonstationary version of Theorem 4.1

in [2].

Proposition 3.2. There is one and only one rea~ixation C3.5) in S.,

naneZy (3.37) having any of the fo'oZZo.in £roperties:

(i) x.(t), u.(t), B.(t) and the state owvariwae P.Ct) of S. are

the Unmits (the first two in the mean square) of x.(t;to),
ut,to0 ), BCt,t o ) and P,(t,t o) respe y as t o  .

(ii) the covaiance matrix function P, satisfies

P*(t) - A(t,P,(t)) , (3.38)

where A is given by (3.22), and it is mininsm in the sense that

P, (t) < P(t) (for each t cJR) , (3.39)

(iii) the innOmoation process u* satiafiee

Hn(du) - H(y) (3.40)

for aLL t e IR, and

(1v) for ay realization S e S, with state process x, the procee

x. is the estimate

E{x(t) I H-(y)} - x.(t) (3.41)

!t

(i.e., x*, is invariant woith respect to the partiasl~a' reaLiza-

tion S e S.).

In analogy with the forward setting, we see that the process

3*,(t;tl) tends to a limit R,(t) in mean square as t1  j . Consequently,

*,(t'tl) , B,(t,tl) and P,(t,tl) tends to the limits 6,(t), B,(t) and

P,(t) as t 1 Hence, we obtain a representation analogous to (3.36)
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for 1,; we shall call it the steedy-atate backarad KWa mt-&scJ fiZter.

Therefore, we define S to be the class of all analytic backward reali-

zations (3.11) of (y(t); t e IR} whose Ialman-Bucy estimate on the

interval [t otl] tends to the steady-state backward Kalman-Bucy filter

as t 1  =. Precisely as in the forward setting, we can see that R* is

the state process of the model

dR, - -F'Idt + A~dd,

( ,) (3.42)
dy a Gi~dt + R~adi,

and that e £ S. The state covariance function P. of . satisfies

PCt) - A(tP, (t)) (3.43)

where A is given by (3.27).

Since P,(t) > 0 for all t e R., we see that the process

x*(t) - P(t) -l (3.44)

is well-defined, and is the state of the model

dx* = Fx*dt + B*du*
(S*) (3.45)

dy = Hx*dt + R du*

where B* and u* are the limits of B*(ttl) and u*(ttl) ast 1  The

state covariance function P* of (3.45) is Vl = (lin P,(t,tpf' Wt1 4wO

lim (P,(t,t 1))' = lim P*(t,t1). it is easy to see that P* satisfies
tl-M t"

P*(t) A(t,P*(t)) (3.46)

and that Q*(t) := E{[x(t) - x*(t)][x(t) - x*(t)]} is given by

Q*(t) = P*(t) - P(t) . (3.47)

,!
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Since x*(t) - lir x*(t;t 1 ) and E{x*(t;t1 ) 1 H [topt(y ) ) x,(t;to) ,tl-+

we see that the Ialman-Bucy filter of S* on [to,t 1 ] tends to x, in

mean square as to .* Hence S* e S.

As a corollary to Proposition 3.2 and the above discussion,

it is now clear that

P,(t) : P(t) < P*(t) (3.48)

for all t e IR.

As another corollary, we shall obtain the following algorithms

to calculate P, and P*. They were originally obtained by Clerget [71]

through an argument first used in [11]. The proof in [71] relies on

control theory techniques and gives little insight into the stochastic

nature of the problem. Our proof is not only simpler, but it also pro-

.vides a stochastic interpretation for these equations.

Corollary 3.3. Let II and ft be the unique solutiona of the n x n-

matrix partial differentiat equations

(,-+ }) (t,s) = A(t,I(t,s)) ; It(t,o) = 0 (3.49)

71i (..+ s)Rt,s) A(t,ft(t,s)) ; ftCt,o) = 0(3.50)

respectively, where A and A c--e given by (3.22) and (3.27) respectively.

Then II(t,s) + P,(t) and I(t,s) + P*(t) as s + m.

Proof: Let to E IR. Set s = t - t0 and lI(ts) := P,(t,t - s). Then

P,(t,to) HI(t,t - t ). Hence dP* (,to) L

0 0-mI
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But, by (3.22), =t (t'to= A(tP*(tto) A A(t,lH(t,t - t)). Since

P,(t,t) a 0, 1(t,O) - 0. Hence (3.49) follows. To see that

IT(t,s) + P,(t) as s -, just observe that, by Proposition 3.2,

P,(t,to) P,(t) as to - Finally, (3.5O) follows from (3.43) and

an argument analogous to the above. 0

Finally, we shall solve the smoothing problem for this infinite

interval setting.

Let S c S be arbitrary. The smoothing problem requires deter-

I mining the estimate

,,(t) := E{x(t) H(y)) (3.Sl)

of the state x of S. Recall that the smoothing estimate x(t;t0 ,t1 ) on

the finite interval [to,t1 ] is defined by (3.32). Since, by the argu-I0
ment used above

^("t 0 ,t1) - E{x(t) I H [to (y)} -4 E{x(t) I H(y)} = X(t)

as t 4 - and as t 4 , we see that (3.33) yields the following

formula ((3.53)), which holds under the assumption that the covariance

function K of y is coercive, i.e., there exists a positive constant

y

such that

ft o it u,(r)KyCrs)u(s)dds > 4 Ilu(t)11 (3.52)

for all square integrable functions u. It was shown by Clerget

[71; p.29] that this assumption implies P* - P, > 0.
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Proposition 3.4. Assume that the ovtariance function K of y ia co-

ercive. Let x be the state proceas of an arbitrary realization S e S,

cmd let 2 be the orresponding smoothin estimate (3.5l). Then

(t) - [I - Q,(t)Q(t) ]x,(t) + Q(t)Q(t) -x*ct) (3.53)

where (4 - P - P, andQ= P* - P*.

Remark. Formula (3.53) suggests a representation for the state process

of an internal realization (i.e., a realization satisfying H(x) C H(dy).)

If S c S is internal, then, by (3.51), x(t) • x(t) for each t e R.

Corollary 3.5. Assume that the covaiance function Ky of y is oercive.

Let x be the state process of an internal realization S c S. Then x can

be written

x(t) = II(t)x,(t) + (I - 11(t)]x*(t) , (3.54)

where 11 is a projection given by 11 = QQ- and Q* = P* - P.

Proof. In view of Proposition 3.4, it only remains to show that

11 = Q*Q is a projection. Let E(t) := E{[xxt) - 2(t)]x xt) -

Then, it can be shown (Chapter 2) that Z = Q, - QQ-1 Q,. Then, since

S= x, E = 0. Consequently, Q*Q- oQq-lQ -1. But I - Q*Q-1

Q'-l, Phence Q*Q-1 i.e., 112 1I. 0
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3.4. The Set P

Let P be the set of all state covariance functions P given by

(3.6) as S ranges over S. Any P c P must also satisfy (3.12); (3.6)

and (3.12) constitute the equations of the nonstationary version of

the Positive Real Lema. Since, in addition, the state covariance P

of any S e S is positive definite, we may write P - {P -'P > 0 1 P

solves (3.6) and (3.12)). It can easily be checked that P is bounded

and convex [71]. Some straightforward algebraic manipulations yield

P = {P U P' I A(t,P(t)) - P(t) 5 0 for all t e R}. (3.55)

For each P e P, define the feedback matrix

r = F - (G - PH')RI H (3.56)

Let the feedback matrices corresponding to P, and P* be denoted r, and

r* respectively. Let P+ = {P I P > P,} and P - (P I p < P*}* If the

covariance function of y is coerciw., i.e., satisfies (3.52), P* - P, > 0.

Consequently P+ and P. are both nonempty.

Now let P be the subset of P defined by
0

P 0 { P e P I A(t,P(t)) - P(t) 0} . (3.57)

Then it is immediately seen that Po {P E P I B 01.

Lema 3.6. Let S e S with state covariance function P. Then S is in-

ternal if ad only if P e P0.

Proof. Let P i P0 . Then B2 0 , hence S has the form
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{dx a Fxdt + B1 du

dy = Hxdt + Rdu

Consequently, x can be solved for in terms of y as follows

dx x Fxdt + B1R_[(dy - Hxdt]

which clearly implies that S is internal. Since the smoothing for-

mula (3.53) is the same as (3.33), the argument in proving Theorem 4.4

in [64] can be used to prove the converse. 0

Corollary 3.7. p. a P* belong to P

Proof. This follows from (3.38) and (3.46). 0

It is worth noting that once the covariance function P of a

realization S e S is known, the quadruplet (F, B, H, (R ,O)] is deter-

mined upon observing that

B1 = (G - PHI)R"  (3.S8a)

B 2 - A(P) . (3.S8b)

Determining the quadruplets [F, B, H, (R ,O)] solves what we have

called before the wide aense stochastic realization problem, i.e., is

equivalent to finding all realizations whose outputs have the same co-

variance properties. In the next section, we shall present an algorithm

to generate such quadruplets.

Finally, it is not hard to see that Proposition 1.12 and Corol-

laries 1.13 and 1.14 hold for this setting also with obvious modifications.
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3.5. Non-Riccati Algorithm Inside 8

In this section, we shall present an algorithm to generate (wide

sense) realizations without resort to the intermediate step of solving

for P. This algorithm is the nonstationary, continuous-time version of

(1.54) and Theorem 6.2 in [2]. In order for the idea of proof used in

[2] to be applicable in our nonstationary setting, we shall have to in-

troduce an additional condition on the given process (y(t); t e £ }:

Assume that y is generated as the output of a stochastic system (3.5)

such that B2 is constant and nonaer. Of course this does not imply

that all S e S have such a B2, merely that there are nontrivial

(B2 a 0), elements in the subclass S :- {S e S IB constant). Let P
2C 2C

be the subset of P corresponding to realizations in Sc.

Lemaa 3.8. Let P e PC. Then A(t,P(t)) - P(t) is contant on the

real line.

To develop the algorithm, we shall first construct, for a given

matrix function Po e Pc, a trajectory of matrix functions in P extend-

ing from P. through Po to P*, so that these functions are totally ordered

in a sense to be defined below.

Theorem 3.9. Assume that the vwicance function K of y is oercive.

Let A be defined by (3.22). Let Po be an arbitrary function in PC.

Let P be the unique solution in the (t,s) plane of the matric partial

differential equation
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( ) P(t,S) " A(t,P(t,s)) ; P(t,O) Po(t) . (3.59)

Then, (i) P ',s) e P for al s e (-c-), (ii) for each t c R,

P(t,s 2) S PCt,S1) for s1 S s2, ("') .gf Po e P_, for each t eIR

P(ts) + P,(t) as s andi (iv) if P0 c P , for eadi t c R,

P(t,s) - P*Ct) as 4 -.

Remark. Before proving this theorem, it is worth noting that the par-

tial differential equation (3.59) can be trivially transformed to an

(infinite) family of ordinary differential equations (3.18) with differ-

ent initial conditions. To see this, set a a t - s and let

P(t,a) := P(t,t - a). Then, it is easy to see that the left-hand side

of (3.59) is Y t,a). Finally, P(a,O) = P(a,a). Hence, (3.59) is the

ordinary differential equation

, " t, t,)) ; aP~aa) a P (0) . (3.60)

The following two lemmas will be needed for the proof of

Theorem 3.9.

Lemma 3.10. The matrix partial differential equation (3.59) has a

unique solution P(t,s) which is a matrix of analytic functions in the

two real variables t cod s.

Proof. It is well known that the ordinary differential equation (3.60)

has a unique solution [4; p.156] which is also analytic (for the param-

eter matrices are). Then the same is true for (3.59). 0
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Lenmna 3.11. Let P0 e PC Then the matrix partial differential equa-

tion (3.59) can be replaced (in the sense that it has the acme soZution P)

by the syst en

fj t's) - U(t,s)[A(t,Po(t)) - POt)]U(t,s), ; P(t,O) - Po(t) (3.61a)

4+ u(t,s) = r(t,s)Ut,s) ; U(t,O) - I (3.61b)

where r(t,s) is the feedback matrix (3.56) orresponding to P(t,s).

Proof. We shall use the differentiation technique of [21]. The reason

why this method works in this nonstationary setting is of course that

the coefficient matrices do not depend on s, which is the dynamic vari-

able of the algorithm. First, reformulate relation (3.59) to read

I.~ 1 -1Sr + S-) P(t,s) = [F(t) - G(t)R(t) -H(t)]P(t,s) + P(t,s) [F(t) -G(t)R(t) 'H(t)]'

+ P(t,s)H(t)'R(t) iH(t)P(t,s) +G(t)R(t)' G(t)' . (3.62)

Since P(t,s) is a matrix of analytic functions, the mixed partial

derivatives of P(t,s) with respect to t and s are identical. Using

this fact, differentiating (3.62) with respect to s and setting N(t,s) ::

t's), it can be seen that

+ IsN(t,s) = r(t,s)N(t,s) + N(t,s)r(t,s)' . (3.63a)

In view of (3.59), this partial differential equation has the boundary

condition

N(t,O) - A(t,P 0 (t)) - Po(t) , (3.63b)

which, by Lemma 3.8, is constant for P0  P c Consequently, (3.63) can

be integrated to yield
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N(t,s) a Uct,s)NCt,O)U(t,s)' (3.64)

where U is given by (3.61b). Consequently, P satisfies (3.61). But

(3.61) clearly has a unique solution, and therefore the lema follows. 0

Proof of Theorem 3.9. Let P 0c P C. Then A(t,P 0(t)) 0 p(t) :5 0, and

consequently, by (3.61a),

3I t, S) < 0 (3.65)

which, in view of (3.59) and (3.55), implies that P(.,s) e P for all

sc (-a,), i.e., (i) holds. Property (ii) is an immediate consequence

of (3.65). To prove (iii), we follow [72]. First note that (i), (ii),

and (3.39) imply that, for each t e R, so P(t,s) is a nonincreasing

function bounded from below by P,(t), and consequently P(t,s) tends to

a limit P(t) as s . It remains to show that P - P,. Keeping t

fixed and letting s in (3.S9), it is not hard to see that P satis-
dP tt);hneP P Tey

fies the differential equation A(tP(t)); hence P c P . Then, by

Lemma 3.6, P is the state covariance function of an internal realization;

let x denote its state process. But, then i satisfies (3.54) for some

family {T(t); t e ]R} of projections, i.e., x*- (x* - x*), which

yields

P*(t) - P(t) -a I(t)(P*(t) - P,(t)]T1(t)' . (3.66)

To see this, use the orthogonality relations of Lemma 3.5 in [64]. Now,
use the fact that P0 E P_ and P(t) < Po(t) for all t e JR (for P(t,.)

is a nonincreasing function), to see that P(t) < P*(t) for all t e IR.

Consequently, for each t c R,
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11(t)[P*(t) -P, Ct)]11(t)' > 0

which can hold only if 11(t) is nonsingular. But 1(t) is a projection,

2i.0., 1(t)IM 11(t), which together with nonsingularity implies that

11(t) I. Hence, it follows from (3.66) that P - P*, as required. The

proof of (iv) is analogous. 0

We are now ready to formulate the non-Riccati algorithm to

generate families of (wide sense) roalizations. As all realizations

are determined by the matrix B, the algorithm will be given in terms of

this parameter only.

Let B - {B - (B1 ,B 2) j B1 and B2 are given by (3.58) as P ranges

over P}. Let 80, 8_ and B+ be defined analogously in terms of P0, P-

and P+ respectively. It is clear that B consists of those B c B for4. 0

which B2 a 0. In particular, let B, and B* denote the elements of 80

corresponding to P, and P*.

Theorem 3.12. Assme that the covariance function K of y is coercive.

y
Let [F, B° , H, (R ,O)] be an arbitrary (wide sense) realization of y

su ch that B2o iS onstant on ( an,oo) d let s '* B(t,s) = [Bl(t,s), B2 (t,s)]

be the unique solution of the system
3@BI=Bts) 2 (ts) B  H() 1R(t) "  ; B ( t,O) =Bl(t)(3.67a)

(II + @JB 2 t,s) [F(t) -B1 (t,s)R(t) - H(t) ] B2 (t,s) • B2(tO) =B . (3.67b)

For each s c (,o), let P(t,s) be the unique solution of

t's) =F(t)P(t,s) +P(t,s)F(t)' +B(t,s)B(t,s)' (368
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Theno for each s e (-al,m), [F, B(-,s), H, (R ',O)] ise a (wide ense)

rea~ixation of y., with state coariance function P(.,s). If Boc _

for each t e 1R, B (t, s) -l- B. (t) as s an, d if B0 e B+,J for each

t e IR., B(t,s) +B*(t) as s -l--*. Finally, the function P satiaf ie

conditions Wi NO'b of Theoren 3.9 and the e~sation

Proof. Let P0 be the state covariance function of the initial real-

realization [F, B0, H, (R ,O)] and let 3 ' -P(t,s) be the trajectory

through P 0 defined by Theorem 3.9. Define

Blt,s) - [G(t) -P~t,s)Ht)I]R(t)f (3.70a)

and

B (t's) -U(t's)B~ 0 (3.70b)

where U~t,s) is given by (3.61b). Then, fs{t,s) - U(t,s)N(t,O)LJ~t,s)'

o Of-U(t,s)B 2B 2  U(t,s)' - -B 2 (t,s)B 2 (t,s) 1. This proves (3.69). Differ-

entiate (3.70a) with respect to s and use (3.69) to get (3.67a). To

prove (3.67b), differentiate (3.70b) with respect to s and use (3.61b).

In view of (3.59) and (3.69), aj t's) = -B (t,s)B (t,s)'

A(t,P(t,s)) - Kt{t,s). Hence Yt(t,s) = A~t,P~t,s)) + B 2(t,s)B 2(t,s)'

which is (3.68). Hence (P(t,s), B(t,s)) satisfy (3.6) and (3.12), and

consequently,[F(t), B(t,s), H~t), (R(t) 0O] is a realization of y with

state covariance P(t,s) which satisfies conditions (i)-(iv) of Theorem 3.9.

Finally, the fact that B 1(t,s) -,B*(t) CB*(t)) under the stated condi-

tions follows from condition (iii) ((iv)) of Theorem 3.9. Since

~t's) -)- 0 as s - (o),B 2 (t,s) - - 0 as s 4+oo).Hence B(t,s) 4

(B*(.t),0) (CB*(t),0)) as s -~+o~o. 0
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Remark. This theorem has the following interpretation. Each realiza-

tion (3.5) in S gives rise to a family of realizations indexed by

sC

(S 3) dxs - F(t)x(t)dt + 8 1(t,s)dus + B2 Ct,s)dv s  (3.71a)

C dy - H(t)xs(t)dt + R(t)dus (3.71b)

which are totally ordered in the sense that the state covariances

P(ts) - E{xs(t)xs (t)'} of Ss satisfy P(t,s 2) S P(t,s 1) for s1 1 s2 '

If B0 e B, this family will contain the minimum-variance reali-

zation S,, and if B 0 B+, the family contains the maximum-variance

realization S*. Finally, if B c 8 , (3.71) will contain only one

realization: (3.5) itself.

3.6. The Singular and The Mixed Cases

The stochastic realization problem may be classified into three

categories:

(i) the reguler case, for which R(t) is positive definite for

all t c JR

(ii) the singucr case, for which R(t) : 0, and

(iii) the mixed case, for which R(t) * 0, but det R(t) - 0 for

all t e 3R.

(In fact, there is a fourth case, which we shall not deal with here,

i.e., the case for which det R(t) = 0 for some, but not afl t E IR.)

By the assumptions made in Section 3.1, we have just studied the

first of these cases. The analysis used depends heavily on the fact

that R(t) is invertible for all t e 1R. To solve the problems of the
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last two categories, we shall first have to reformulate them in the

following way: the given realization [F, G, H, R] will be converted

to an equivalent realization (in the sense of the definition given

below) [F a, G as Ha, R.] where RaMt is positive definite for all

t e IR. The results of this section are generalizations of similar

results presented in (18].

Definition 3.13. ((18]). The two realizations [Fl, G1, H1 , R1]

rand [F, G, H2 , R2 are said to be cqiv.alent if they have the

same set P.

Let us start with the singular case, i.e., let R(t) 0 for

all t e R . Then the equations (3.6) and (3.12) of the Positive

Real Lemma become

P FP + PFt + BB' (3.72a)

G - PHI a 0 (3.72b)

P xP' >0. (3.72c)

Proposition 3.14. Let the entries of G and H be differentiable at

least n times. Then, the reaLizationa (F, G, H, 0) cmd [F, Ga HV R3

where

Ga -G FG, (3.73a)

H a =HF +H (3.73b)
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Ra HG -. GH, - HFG - G'F'H' (3.73c)

WS quivaZent (in the sens of Definition 3.13).

Proof. All realizations arising from the quadruplet [F, G, H, 0] have

the form

dx u Fxdt + Bdw (3.74a)

, ,x (3.74b)

with state covariance function P, which, together with F, G, and H sat-

isfy equations (3.72). Let Ya = " Then, using relation (3.74b), the

following is a realization of the process ya

dx - Fxdt + Bdw (3.75a)

dYa - Haxdt + HBdw . (3.7Sb)

where Ha is given by (3.73b). Observe that (3.74) and (3.75) have the

same state process x and hence the same state covariance P. Hence,

I these realizations of y and Ya have the same set P. We shall show that

I all realizations obtained using the quadruplet [F, G a, H a, R a] are of

It the form (3.75). First, observe that G as given by (3.73a) can be

written as G = PHI + BB'H'. To see this, we use the following sequence
aa

of equalities: Ga = G - FG = PH' + PH' - FPH' = P[F'H' + A') +

tPH - FPH' - PF'H' = PH' + BB'H', which is the G that correspondsA a
to (3.75), obtained from the Positive Real Lemma. It remains to show

that Ra = Da D where Da HB. This is shown by the following sequence

of identities:



130I 
R. H6 - G'A' - HFG - G'FtH'

1 a z HPH' - HFPH' - HPF'H'

a H(P - FP - PF#]H'

" HBB'H' = DaDO 0

1Consequently, by the above proposition, instead of studying the
quadruplet [F, G, H, 0], we can study [F, G , I ' .a]. If Ra z 0,

the above procedure of differentiating the output may be repeated until

a positive definite Ra is obtained. If Ra * 0, but det Ra - 0, the pro-

cedure of the third category, which will be discussed shortly, may be

used.

With this setup, all the results of the previous sections can be

carried over using Ga, Ha and Ra instead of G, H and 0.

Next, we consider case (iii) which is the most general. Here we

need more assumptions than in case (ii). Assume R(t) has constant rank

IU, for all t E ]R and the entries of R(o) are differentiable at least n

times. Set k := rank R(t).

Since R(t) # 0 but det R(t) = 0, by Dolezal's Theorem (see

e.g. [73]), there exists a nonsingular matrix function S, the entries
A

of which are differentiable at least n times, such that R = SRS

0'10 with RI a positive definite k x k matrix function. This trans-

formation corresponds to a change of basis in the subspace spanned by y:

instead of examining the process y, we examine another process y = Sy.
[eRl =1

Without loss of generality, we shall assume R = 0 with R1as above.
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Partition the matrices H, G and D in the following manner:

H - with H1 is k x n and H2 is (m - k) x n,

G = [GI, G2] with G, is n x k and G is n x (m - k) and

D = with D is k x p and D2 is (m - k) x p.

Consequently, equations (3.6) and (3.12) become

P x FP + PF' + BB' (3.76a)

G 1 - PH{ = BD( (3.76b)

4 DD x R > 0 (3.76c)

D2 = (3.76d)

G- PH!% -0 (3.76e)

P = P' > 0 (3.76f)

The following is the generalized version of Proposition 3.14.

Proposition 3.15. Let the entries of G, H and R be differentiable at

least n times =rd let R(t) be of constant rank for all t 4 ]R. Let

GI, G2 j HI, H2 and R be as defined above. Then the realizations

[F, G, H, R] and (F, Gaj Ha, Ra , where

I a = [G1 G2 - FG2 ] (3.77a)H',
Ha LH2F+ A2 (3.77b)

G [H2 HG

R G'HI H G
Ra 1 1HG 2 1~ 12 l2 - 2 ' 4 (3.77c)

a [HG G H G H - G A' - H FG2 G'''
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are equivalent (in the aenase of Definition 3.13).

Proof. The proof is an immediate consequence of that of Proposition 3.14

and follows upon defining ya =  , where y has been partitioned com-

patibly with the rest of the matrices, as y- [2j. C

If Ra obtained above is not full rank, we repeat the above proce-

dure of changing the basis and differentiating the component of the

output that does not contain a white noise until we arrive at a nonsingu-

lar Ra. The natural question that arises is whether this procedure

terminates in a finite number of steps. Silverman (74] has shown that,

subject to some extra regularity conditions, the answer is yes.

As a special case, we may quite easily obtain all the results

of Germain (18] for the stationary singular and mixed cases. These re-

sults are summarized in the following two corollaries.

Corollary 3.16. Let F, G and H be onstamt cad let R = 0. Then the

quadruplets [F, G, H, 0] and [F, -FG, HF, -HFG - G'F'H'] are equivalent.

Corollary 3.17. Let F, G, H and R be constant and let R * 0 but

det R = 0. Then the quaduplets [F, G, H, R] and [F, G , Ha, Ra], wherea a a

G - FG2  , H= anda 1  2 1  HIG2
GIH2 " 2

R- -H2FG2 - GF'H I

are equivalent.
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Remark. Germain [18] has obtained the following values for G., H and

R ; a choice that we are not able to explain or understand:

G a: [G 1  C1] ~Ha - (H 1, -C 2) Ra 01 BI where

C --G - GR-1 [GIH - HG 2]

C2 - ',. -IH R1' [G'Hl - HlG2]

B: -[H2PG2 + G F'H2 ] - (H2G1 - GCH2]R I[H2G1 "G- HI]
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